当前位置: 首页 > news >正文

OpenCV 01(图像加载与显示)

一、机器视觉

现在说的机器视觉(Machine Vision)一般指计算机视觉(Computer Vision), 简单来说就是研究如何使机器看懂东西。就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

1.1 机器视觉的应用

人脸识别, 车辆检测,识别图像中的文字(OCR),图像拼接, 修复, 背景替换

二、OpenCV

Gray Bradsky于1999年开发, 2000年发布
C++, Python, Java, JS
跨平台(Windows, Linux, Mac...)

学习opencv可以:

  • 了解OpenCV的运行机制
  • 可以使用OpenCV处理一些图像常见问题
  • 学会物体识别, 文字识别等问题的处理思路

2.1 安装OpenCV 

使用服务器虚拟环境安装:

pip install opencv-python==4.7.0.72


安装opencv扩展包(选装):

pip install opencv-contrib-python==4.7.0.72

如果装不了去:https://www.lfd.uci.edu/~gohlke/pythonlibs/下载相应的包手动安装.

三、OpenCV读取与显示

3.1 创建窗口

namedWindow() 创建命名窗口# WINDOW_AUTOSIZE 窗口大小不允许修改
cv2.namedWindow('new', cv2.WINDOW_AUTOSIZE) # WINDOW_NORMAL可以让窗口大小变得可以调节
# cv2.namedWindow('new', cv2.WINDOW_NORMAL)# 修改窗口大小
# cv2.resizeWindow('new', 1920, 1080)imshow('new', 显示内容) 显示窗口
# 销毁图像窗口 cv2.destroyAllWindows()# waitKey方法表示等待按键, 0表示任何按键, 其他整数表示等待按键的时间,单位是毫秒, 超过时间没有发生按键操作窗口会自动关闭.
waitKey() 等待用户输入# 会返回按键的ascii的值
# key = cv2.waitKey(0)
if key == ord('q'):
cv2.destroyAllWindows()

ord()获取ascii值


 

3.2 图片读写

使用imread可以读取图片, 默认读取的是彩色图片.
imread(path, flag)
imwrite(path, img): 使用imwrite保存图片

cv2.imread('01_Picture/01_cat.jpg')
cv2.imshow('cat',img)
cv2.waitKey(0)

 使用matplotlib显示`plt.imshow(img)`

import matplotlib.pyplot as pltimg= cv2.imread('D:\\3-project\\zyj\\pythonCNN\\pic\\cat.jpeg')
plt.imshow(img)
plt.show()

因为OpenCV读取的图片颜色通道是按照BGR(蓝绿红)排列的, 一般图片通道都是按照RGB来排列的.为了正常的显示猫的图片, 我们要用OpenCV的图像显示方法:

3.3 视频播放和录制

视频是由图片组成的, 视频的每一帧就是一幅图片, 一般是30帧, 表示一秒显示30张图片

cv2.VideoCapture可以捕获摄像头, 用数字来表示不同的设备, 比如0, 1
vc = cv2.VideoCapture('./1.mp4')  # 打开视频文件
vc = cv2.VideoCapture(0)  # 打开摄像头

import cv2
import matplotlib.pyplot as plt
import numpy as npcv2.namedWindow('video', cv2.WINDOW_NORMAL)
cv2.resizeWindow('video', 640, 480)vc = cv2.VideoCapture(0) #打开摄像头while True:# vc.read() 返回两个值, 第一个为状态值, 读到帧为True, 第二个值为视频帧ret, frame = vc.read()if not ret:breakcv2.imshow('video',frame)  # 将视频帧放在窗口中显示key= cv2.waitKey(10)if key & 0xFF == ord('q'):break# 释放
vc.release()
cv2.destroyAllWindows()

录制视频

cap = cv2.VideoCapture(0)
# *mp4v就是解包操作 等同于  'm', 'p', '4', 'v'
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# (640, 480)表示摄像头拍视频, 这个大小搞错了也不行.
# 主要是这个分辨率.
vw = cv2.VideoWriter('output.mp4', fourcc, 20, (640, 480))while cap.isOpened():ret, frame = cap.read()if not ret:print('can not recive frame, Exiting...')breakvw.write(frame)cv2.imshow('frame', frame)if cv2.waitKey(1) == ord('q'):breakcap.release()#释放VideoWriter
vw.release()cv2.destroyAllWindows()

- VideoWriter : 参数一为输出文件, 参数二为多媒体文件格式(VideoWriter_fourcc, 参数三为帧率, 参数四为分辨率.
- write 编码并写入缓存
- release 缓存内容写入磁盘, 并释放资源

3.4 控制鼠标

OpenCV允许我们对窗口上的鼠标动作做出响应.

setMouseCallback(winname, callback, userdata) winname是窗口的名字, callback是回调函数, userdata是给回调函数的参数.

callback(event, x, y, flags, userdata)回调函数必须包含这5个参数. event是事件(鼠标移动, 左键, 右键等), x,y是点鼠标的坐标点, flags主要用于组合键, userdata就是上面的setMouseCallback的userdata

  鼠标事件: 

  - EVENT_MOUSEMOVE   0     鼠标移动
  - EVENT_LBUTTONDOWN   1   按下鼠标左键
  - EVENT_RBUTTONDOWN   2  按下鼠标右键
  - EVENT_MBUTTONDOWN  3 按下鼠标中键
  - EVENT_LBUTTONUP    4      左键释放
  - EVENT_RBUTTONUP   5      右键释放
  - EVENT_MBUTTONUP   6     中键释放
  - EVENT_LBUTTONDBLCLK 7 左键双击
  - EVENT_RBUTTONDBLCLK  8 右键双击
  - EVENT_MBUTTONDBLCLK  9 中键双击
  - EVENT_MOUSEWHEEL  10 鼠标滚轮上下滚动
  - EVENT_MOUSEHWHEEL 11 鼠标左右滚动

  flags:

  - EVENT_FLAG_LBUTTON    1  按下左键
  - EVENT_FLAG_RBUTTON    2  按下右键
  - EVENT_FLAG_MBUTTON   4 按下中键
  - EVENT_FLAG_CRTLKEY    8   按下ctrl键
  - EVENT_FLAG_SHIFTKEY   16  按下shift键
  - EVENT_FLAG_ALTKEY       32  按下alt键

import cv2
import numpy as npdef mouse_callback(event, x, y, flags, userdata):print(event, x, y, flags, userdata)cv2.namedWindow('mouse', cv2.WINDOW_NORMAL)
cv2.resizeWindow('mouse', 640, 360)# 设置鼠标回调函数
cv2.setMouseCallback('mouse', mouse_callback, '123')# 显示窗口和背景
# 生成全黑的图片
img = np.zeros((360, 640, 3), np.uint8)
while True:cv2.imshow('mouse', img)key = cv2.waitKey(1)if key & 0xFF == ord('q'):breakcv2.destroyAllWindows()

3.5 TrackBar控件

- createTrackbar(trackbarname, winname, value, count, onChange) 创建TrackBar控件, value为trackbar的默认值, count为bar的最大值, 最小为0
- getTrackbarPos(trackbarname, winname) 获取TrackBar当前值

import cv2
import numpy as np# 创建窗口
cv2.namedWindow('trackbar', cv2.WINDOW_NORMAL)
cv2.resizeWindow('mouse', 640, 480)
# 定义回调函数
def callback(value):print(value)# 创建trackbar
cv2.createTrackbar('R', 'trackbar', 0, 255, callback)
cv2.createTrackbar('G', 'trackbar', 0, 255, callback)
cv2.createTrackbar('B', 'trackbar', 0, 255, callback)# 创建一个背景图片
img = np.zeros((480,640,3), np.uint8)while True:# 获取当前trackbar的值r = cv2.getTrackbarPos('R', 'trackbar')g = cv2.getTrackbarPos('G', 'trackbar')b = cv2.getTrackbarPos('B', 'trackbar')# 改变背景图颜色img[:] = [b, g, r]cv2.imshow('trackbar', img)key = cv2.waitKey(1)if key & 0xFF == ord('q'):breakcv2.destroyAllWindows()

相关文章:

OpenCV 01(图像加载与显示)

一、机器视觉 现在说的机器视觉(Machine Vision)一般指计算机视觉(Computer Vision), 简单来说就是研究如何使机器看懂东西。就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传…...

1-Pytorch初始化张量和张量的类型

1-Pytorch初始化张量和张量的类型 1 导入必备库 import torch import numpy as np2 初始化张量 # 初始化张量 t torch.tensor([1,2])#.type(torch.FloatTensor) print(t) print(t.dtype)输出: tensor([1, 2]) torch.int643 创建float型张量 # 创建float型张量…...

诊断网络卡的原因

首先,通过ipconfig和ping命令来诊断。 手头要有一台Windows电脑。在dos窗口下,输入ipconfig,可以查看到本机“手动设置”或者“自动获取”的IP地址。 这里有几种可能性: IP地址和网关地址都正确。(不存在问题&#xf…...

100万级连接,爱奇艺WebSocket网关如何架构

说在前面 在40岁老架构师 尼恩的读者社区(50)中,很多小伙伴拿到一线互联网企业如阿里、网易、有赞、希音、百度、滴滴的面试资格。 最近,尼恩指导一个小伙伴简历,写了一个《高并发网关项目》,此项目帮这个小伙拿到 字节/阿里/微…...

当电脑遇到msvcp110.dll丢失怎么办?最新解决方法分享

在使用电脑过程中,我们经常会遇到一些系统文件丢失的问题。其中,msvcp110.dll是Windows操作系统中的一个重要的动态链接库文件,它包含了许多与C运行库有关的函数和类。当系统中缺少或损坏这个文件时,可能会导致一些应用程序无法正…...

微信小程序自动化测试pytest版工具使用方法

-mini https://github.com/zx490336534/pytest-mini 微信小程序自动化测试pytest插件/工具 基于MiniTest进行pytest改造 使用方法 准备测试小程序 根据miniprogram-demo项目介绍运行一次项目 成功运行后关闭 安装&更新 pip install pytest-mini --upgrade引入插件…...

React 与 TS 结合使用时的技巧总结

使用 TS 泛型来定义通用参数 有些时候会遇到有些业务页面结构是通用的&#xff0c;只是传入页面组件的参数略有不同&#xff0c;这样我们可以使用 TS 的泛型来定义通用参数。具体的实例如下&#xff1a; type GenericPropsData<T> {items: T[];onClick: (value: T) &g…...

【深入解析spring cloud gateway】07 自定义异常返回报文

Servlet的HttpResponse对象&#xff0c;返回响应报文&#xff0c;一般是这么写的&#xff0c;通过输出流直接就可以将返回报文输出。 OutputStream out response.getOutputStream(); out.write("输出的内容"); out.flush();在filter中如果发生异常&#xff08;例如…...

如何写一个sh脚本将一个本地文件通过 scp命令上传到远程的 centos服务器?

如何写一个sh脚本将一个本地文件通过 scp命令上传到远程的 centos服务器&#xff1f; 1.1 背景需求1.2 解决方案1.3 附录1.3.1 scp命令用法与示例1.3.1.1 scp命令用法与解释1.3.1.2 scp 命令用法示例1.3.1.2.1 示例一&#xff1a;从本地复制文件到远程计算机1.3.1.2.2 示例二&a…...

【CMake工具】工具CMake编译轻度使用(C/C++)

目录 CMake编译工具 一、CMake概述 二、CMake的使用 2.1 注释 2.1.1 注释行 2.1.2 注释块 2.2 源文件 2.1.1 共处一室 2.1.2 VIP包房 2.3 私人定制 2.2.1 定义变量 2.2.2 指定使用的C标准 2.2.3 指定输出的路径 2.4 搜索文件 2.3.1 方式1 2.3.2 方式2 2.5 包含…...

用Navicat备份Mysql演示系统数据库的时候出:Too Many Connections

今天用Navicat进行数据备份的时候&#xff0c;发现由于数据库连接数目过多导致连接锁定&#xff0c;这种情况在多人协同开发的场景中很常见。当然我这里也因为多个应用使用了数据库连接&#xff0c;所以出现了Too Many Connections。 可能是超过最大连接数了。 1、进入Navicat…...

知识储备--基础算法篇-矩阵

2.矩阵 2.1第54题螺旋矩阵 第一题上来就跪了&#xff0c;看了官方答案感觉不是很好理解&#xff0c;找了一个比较容易理解的。 class Solution(object):def spiralOrder(self, matrix):""":type matrix: List[List[int]]:rtype: List[int]"""…...

Zabbix -- QQ邮箱报警

目录 一、创建监控项及触发器 1.1创建监控项 1.2 创建监控项的触发器 1.3 测试触发器 二、邮箱媒介设置 2.1 设置报警媒介类型 2.2 创建用户群组和用户 三、动作绑定 3.1 创建动作 3.2 动作操作 3.3 动作测试&#xff08;发送邮件测试&#xff09; 四、问题总结 4.1 邮件发送…...

eclipse链接MySQL数据库

在MySQL官网下载驱动 MySQLhttps://www.mysql.com/cn/点击下载&#xff1a; 页面滚动到最下方选择社区版&#xff1a; 选择Java版本: 接下来&#xff0c;需要选择操作系统&#xff0c;我们选择平台独立&#xff1a; eclipse 接下来&#xff0c;我们打开eclipse&#xff0c;新建…...

ansible 使用roles简单部署LAMP平台

目录 一、了解roles目录 二、基于构建LAMP平台创建roles目录 1、在192.168.115.148创建目录 2、书写php的测试页面 3、编写httpd角色的main.yml文件 4、编写mysql角色的main.yml文件 6、编写lamp的playbook 7、启动剧本 8、访问 一、了解roles目录 在Ansible中&#…...

如何使用Web Storage对页面中数据进行监听?

当使用Web Storage存储的数据发生变化时&#xff0c;会触发Window对象的storage事件&#xff0c;我们可以监听该事件并指定事件处理函数&#xff0c;当其他页面中的localStorage或 sessionStorage中保存的数据发生改变时&#xff0c;就会执行事件处理函数。 监听storage事件的…...

GO语言网络编程(并发编程)runtime包

GO语言网络编程&#xff08;并发编程&#xff09;runtime包 1. runtime包 1.1.1. runtime.Gosched() 让出CPU时间片&#xff0c;重新等待安排任务(大概意思就是本来计划的好好的周末出去烧烤&#xff0c;但是你妈让你去相亲,两种情况第一就是你相亲速度非常快&#xff0c;见…...

MR源码解析和join案例

MR源码解析 new Job(): 读取本地文件, xml配置job.start(): 启动线程job的run():线程方法 runTasks(): 传入对应的接口&#xff0c;启动map或者reduceMapTask类的run(): 设置map阶段的参数&#xff0c;初始化任务&#xff0c;创建上下文对象 创建读取器LineRecordReader判断是…...

ML+LLMs:利用LLMs大语言模型赋能或者结合ML机器学习算法进行具体应用的简介、具体案例之详细攻略

ML+LLMs:利用LLMs大语言模型赋能或者结合ML机器学习算法进行具体应用的简介、具体案例之详细攻略 目录 利用LLMs赋能或者结合ML算法进行具体应用的简介...

python GIL锁

1、GIL是什么 GIL&#xff1a;Global Interpreter Lock又称全局解释器锁。简单来说是一个互斥锁&#xff0c;每个线程在执行的过程中都需要先获取GIL&#xff0c;作用就是限制多线程同时执行&#xff0c;使得在同一进程内任何时刻仅有一个线程在执行。 由于GIL的存在&#xff0…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)

Name&#xff1a;3ddown Serial&#xff1a;FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名&#xff1a;Axure 序列号&#xff1a;8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...

内窥镜检查中基于提示的息肉分割|文献速递-深度学习医疗AI最新文献

Title 题目 Prompt-based polyp segmentation during endoscopy 内窥镜检查中基于提示的息肉分割 01 文献速递介绍 以下是对这段英文内容的中文翻译&#xff1a; ### 胃肠道癌症的发病率呈上升趋势&#xff0c;且有年轻化倾向&#xff08;Bray等人&#xff0c;2018&#x…...