深度优先搜索遍历与广度优先搜索遍历
目录
一.深度优先搜索遍历
1.深度优先遍历的方法
2.采用邻接矩阵表示图的深度优先搜索遍历
3.非连通图的遍历
二.广度优先搜索遍历
1.广度优先搜索遍历的方法
2.非连通图的广度遍历
3.广度优先搜索遍历的实现
4.按广度优先非递归遍历连通图
一.深度优先搜索遍历
1.深度优先遍历的方法
从图中一个未访问的顶点V开始,沿着一条路一直走到底,如果到达这条路尽头的节点 ,则回退到上一个节点,再从另一条路开始走到底…,不断递归重复此过程,直到所有的顶点都遍历完成。
以下面无向图为例,2为起点
(1)以2为起点访问1
(2)以1为起点,因为“1”和“2”之间的边已经走过,所以走3
(3) 同理,以3为起点访问5
(4)到5后,没有可访问的点,返回3,3也没有可访问的点,到1后,可访问之前没有访问过的4
(5)4访问6,至此,遍历完所有的点,DFS(深度优先搜索遍历):2->1->3->5->4->6
2.采用邻接矩阵表示图的深度优先搜索遍历
#define MAX_VERTEX_NUM 100typedef struct {// 定义图的相关信息int vexnum; // 顶点数int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 邻接矩阵// 其他成员...
} AMSGraph;bool visited[MAX_VERTEX_NUM]; // 记录顶点是否被访问过void DFS(AMSGraph G, int v)
{cout << v;visited[v] = true;for (int w = 0; w < G.vexnum; w++) {if (G.arcs[v][w] == 1 && !visited[w]) {DFS(G, w);}}
}
http://t.csdn.cn/HmcOt
之前的一篇文章已经详细说明了邻接矩阵和邻接表的区别,这里同理
1.用邻接矩阵表示图,遍历图中每一个顶点都要从头扫描该顶点所在行,时间复杂度O(
)
2.用邻接表表示图,虽然有2e个表结点,但只需扫描e个结点即可完成遍历,加上访问n个头结点的时间,时间复杂度为O(n+e)
•稠密图适于在邻接矩阵上进行深度遍历;
•稀疏图适于在邻接表上进行深度遍历。
3.非连通图的遍历
左边的连通分量进行深度优先搜索遍历,再在b,g之中选择一个点进行深度优先搜索遍历
其中一种合理的顶点访问次序为:
a,c,h,d,f,k,e,b,g
二.广度优先搜索遍历
1.广度优先搜索遍历的方法
从某个顶点V出发,访问该顶点的所有邻接点V1,V2..VN,从邻接点V1,V2...VN出发,再访问他们各自的所有邻接点,重复上述步骤,直到所有的顶点都被访问过
以如下图为例,起点为V1
一层一层进行访问,广度优先搜索遍历的结果为:V1->C2->V3->V4->V5->V6->V7->V8
2.非连通图的广度遍历
与连通图类似,在b,g中任意选择一个点开始
合理的顶点访问次序为:a->c->d->e->f->h->k->b->g
3.广度优先搜索遍历的实现
广度优先搜索遍历的实现,与树的层次遍历很像,可以用队列进行实现(出队一个结点,将他的邻接结点入队)
以下动图来自爱编程的西瓜,方便大家理解遍历过程
4.按广度优先非递归遍历连通图
#include <iostream>
using namespace std;const int MAX_SIZE = 100; // 队列的最大容量
const int MAX_VERTICES = 100; // 图的最大顶点数struct Queue {int data[MAX_SIZE];int front; // 队头指针int rear; // 队尾指针
};struct Graph { // 定义图bool edges[MAX_VERTICES][MAX_VERTICES]; // 邻接矩阵int numVertices; // 实际顶点数
};void InitQueue(Queue& Q) {Q.front = 0;Q.rear = -1;
}bool EnQueue(Queue& Q, int x) {if (Q.rear == MAX_SIZE - 1) {// 队列已满,无法插入return false;}Q.data[++Q.rear] = x;return true;
}bool DeQueue(Queue& Q, int& x) {if (Q.front > Q.rear) {// 队列为空,无法出队return false;}x = Q.data[Q.front++];return true;
}bool QueueEmpty(Queue& Q) {return Q.front > Q.rear;
}// 找到顶点u的第一个邻接点并返回
int FirstAdjVex(Graph& G, int u) {for (int v = 0; v < G.numVertices; ++v) {if (G.edges[u][v]) {return v;}}return -1; // 或者返回一个特殊的值表示找不到邻接点
}// 找到图 G 中顶点 u 相对于顶点 w 的下一个邻接点并返回
int NextAdjVex(Graph& G, int u, int w) {for (int v = w + 1; v < G.numVertices; ++v) {if (G.edges[u][v]) {return v;}}return -1; // 或者返回一个特殊的值表示找不到下一个邻接点
}void BFS(Graph G, int v) {cout << v;bool visited[MAX_VERTICES] = { false };visited[v] = true; // 访问第v个顶点Queue Q;InitQueue(Q);EnQueue(Q, v); // v进队while (!QueueEmpty(Q)) {int u;DeQueue(Q, u); // 队头元素出队并置为ufor (int w = FirstAdjVex(G, u); w >= 0; w = NextAdjVex(G, u, w)) {if (!visited[w]) { // w为u的尚未访问的邻接点cout << w;visited[w] = true;EnQueue(Q, w); // w进队(将访问的每一个邻接点入队)}}}
}
广度优先搜索遍历算法的效率
1.如果使用邻接矩阵,则BFS对于每一个被访问到的顶点,都要循环检测矩阵中的整整一行,时间复杂度为O()
2.用邻接表来表示图,虽然有2e个表结点,但只需扫描e个结点即可完成遍历,加上访问n个头结点的实践,时间复杂度为O(n+e)
深度优先搜索遍历(DFS)与广度优先搜索遍历(BFS)算法的效率
1.空间复杂度相同,都是O(n)(借用了堆栈或队列)
2.时间复杂度只与存储结构(邻接矩阵【O()】或邻接表【O(n+e)】)有关,而与搜索路径无关
相关文章:
深度优先搜索遍历与广度优先搜索遍历
目录 一.深度优先搜索遍历 1.深度优先遍历的方法 2.采用邻接矩阵表示图的深度优先搜索遍历 3.非连通图的遍历 二.广度优先搜索遍历 1.广度优先搜索遍历的方法 2.非连通图的广度遍历 3.广度优先搜索遍历的实现 4.按广度优先非递归遍历连通图 一.深度优先搜索遍历 1.深…...
java 中 返回一个空Map
原文链接:Map用法总结 Constructs an empty HashMap with the default initial capacity (16) (mutable) // Constructs an empty HashMap with the default initial capacity (16) and the default load fact // Since:1.2 Map<String, …...
sql 执行插入多条语句中 n个insert 与 一个insert+多个values 性能上有和区别 -- chatGPT
在 SQL 中,你可以使用多种方式来插入多条记录。其中两种常见的方式是: 1. **多个 INSERT 语句**:每个 INSERT 语句都插入一行记录。 sql INSERT INTO table_name (column1, column2, ...) VALUES (value1_1, value1_2, ...); INSERT INTO …...
数学建模国赛C蔬菜类商品的自动定价与补货决策C
数学建模国赛C蔬菜类商品的自动定价与补货决策C 完整思路和代码请私信~~~ 1.拟解决问题 这是一个关于生鲜商超蔬菜商品管理的复杂问题,需要综合考虑销售、补货、定价等多个方面。以下是对这些问题的总结: 问题 1: 蔬菜销售分析 需要分析蔬菜各品类和…...
在程序开发中,接口(interface)的重要性
开了很多人写的程序,都适用了接口,也适用了注入,也没有感到什么不妥。如果只是为了注入而写接口,其实我感觉大可不必,特别是把接口和实体写在一个项目项目中的。 我不知道其他人怎么看接口这一层,接口最大的…...

MyBatis关联关系映射详解
前言 在使用MyBatis进行数据库操作时,关联关系映射是一个非常重要的概念。它允许我们在数据库表之间建立关联,并通过对象之间的关系来进行数据查询和操作。本文将详细介绍MyBatis中的关联关系映射,包括一对一、一对多和多对多关系的处理方法…...

常用电子元器件基础知识
目录 一、电阻 二、电容 三、电感 四、保险丝 五、二极管 一、电阻 概念:顾名思义,就是增加电流通过的阻力的。 就像是在水渠中放入东西,能阻止水的顺利通过也是一个道理。 基于电阻的电气特性,电阻在电路中主要有以下四个…...

git撤销还未push的的提交
怎样撤销掉上图中的提交呢 使用以下代码即可提交 git reset --soft HEAD^...

MySQL--数据库基础
数据库分类 数据库大体可以分为 关系型数据库 和 非关系型数据库 常用数据类型 数值类型: 分为整型和浮点型: 字符串类型 日期类型...

Excel相关笔记
1、找出B列中A列没有的数据并放在C列 公式:IF(ISNA(VLOOKUP(B1,$A 1 : 1: 1:A$4,1,FALSE)),B1,“”)...

RouterOS-配置PPPoEv4v6 Server
1 接口 ether3 出接口 ether4 内网接口 2 出接口 出接口采用PPPoE拨号SLAAC获取前缀,手动配置后缀 2.1 选择出接口interface,配置PPPoE client模式 2.2 配置PPPoE client用户名和密码 2.3 从PPPoE client获取前缀地址池 2.4 给出接口选择前缀并配置…...

PhpStorm软件安装包分享(附安装教程)
目录 一、软件简介 二、软件下载 一、软件简介 PhpStorm是一款由JetBrains开发的专业PHP集成开发环境(IDE),旨在提供全面的PHP开发支持。它是基于IntelliJ IDEA平台构建的,具有强大的功能和工具,可以帮助开发人员提高…...

JavaScript设计模式(三)——单例模式、装饰器模式、适配器模式
个人简介 👀个人主页: 前端杂货铺 🙋♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…...
LeetCode:有序数组的平方
题目 给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。 示例 1: 输入:nums [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变…...

数学分析:势场
首先从散度的物理解释开始。首先,在球内的向量场的散度的积分,等于它在球边界上的流量的积分。所以根据积分中值定理,我们可以这么理解散度,它就是这个体积内的速度场的平均密度。而速度场只和源有关,所以它表示的某个…...
MySQL 中 MyISAM 与 InnoDB 引擎的区别
分析&回答 区别很多,大家说出下面几点,面试就应该 OK 了 1) 事务支持 MyISAM不支持事务,而InnoDB支持。InnoDB的AUTOCOMMIT默认是打开的,即每条SQL语句会默认被封装成一个事务,自动提交,这样会影响速…...

【javascript】禁止浏览器调试前端页面
目录 为啥要禁止?无限 debugger基础禁止调试解决对策 为啥要禁止? 由于前端页面会调用很多接口,有些接口会被别人爬虫分析,破解后获取数据,为了杜绝这种情况,最简单的方法就是禁止人家调试自己的前端代码 …...
Oracle Non-CDB配置 TDE(透明数据加密) 的过程
说明 此文档虽然是针对non CDB而写,但是对于CDB的操作过程也是类似的,即在CDB$ROOT中设置完成wallet设置后,在PDB中设置和打开MEK即可。 先决条件 请确保目录$ORACLE_SID/admin/$ORACLE_SID存在,例如此目录为: /u01/app/oracl…...

MySQL——常见问题
NULL和空值的区别 1、空值不占空间,NULL值占空间。当字段不为NULL时,也可以插入空值。 2、当使用 IS NOT NULL 或者 IS NULL 时,只能查出字段中没有不为NULL的或者为 NULL 的,不能查出空值。 3、判断NULL 用IS NULL 或者 is no…...

在FPGA上快速搭建以太网
在本文中,我们将介绍如何在FPGA上快速搭建以太网 (LWIP )。为此,我们将使用 MicroBlaze 作为主 CPU 运行其应用程序。 LWIP 是使用裸机设计以太网的良好起点,在此基础上我们可以轻松调整软件应用程序以提供更详细的应用…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...

HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...