时序分解 | MATLAB实现基于LMD局部均值分解的信号分解分量可视化
时序分解 | MATLAB实现基于LMD局部均值分解的信号分解分量可视化
目录
- 时序分解 | MATLAB实现基于LMD局部均值分解的信号分解分量可视化
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
LMD局部均值分解 直接替换Excel即可运行包含频谱图相关系数图 Matlab语言
1.算法新颖小众,用的人很少,包含分解图、频谱图、相关系数图,效果如图所示,适合作为创❤️~
2.直接替换Excel数据即可用 适合新手小白 注释清晰~
3.附赠测试数据 直接运行main一键出图~
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现基于LMD局部均值分解的信号分解分量可视化。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行cosD = pdist(meas,'cosine');
clustTreeCos = linkage(cosD,'average');
cophenet(clustTreeCos,cosD)ans =0.9360
[h,nodes] = dendrogram(clustTreeCos,0);
h_gca = gca;
h_gca.TickDir = 'out';
h_gca.TickLength = [.002 0];
h_gca.XTickLabel = [];
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826figure
hidx = cluster(clustTreeCos,'criterion','distance','cutoff',.006);
for i = 1:5clust = find(hidx==i);plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i});hold on
end
hold off
xlabel('Sepal Length');
ylabel('Sepal Width');
zlabel('Petal Length');
view(-137,10);
grid on————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:

时序分解 | MATLAB实现基于LMD局部均值分解的信号分解分量可视化
时序分解 | MATLAB实现基于LMD局部均值分解的信号分解分量可视化 目录 时序分解 | MATLAB实现基于LMD局部均值分解的信号分解分量可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 LMD局部均值分解 直接替换Excel即可运行包含频谱图相关系数图 Matlab语言 1.算法新颖…...

景区AR虚拟三维场景沉浸式体验成为新兴的营销手段
科技的迅速崛起正在改变我们的世界,旅游业也在这股浪潮中掀起了一场全新的变革。增强现实(AR)技术正成为旅行中的一股强大力量,通过增添趣味和交互性,为旅程注入了前所未有的活力。本文将带您深入了解AR如何为旅游带来全新的体验,…...

【深度学习】 Python 和 NumPy 系列教程(五):Python容器:3、集合Set详解(初始化、访问元素、常用操作、常用函数)
目录 一、前言 二、实验环境 三、Python容器(Containers) 0、容器介绍 1、列表(List) 2、元组(Tuple) 3、集合(Set) 1. 初始化 2. 访问集合元素 3. 常用操作 a. 添加单个…...
单片机C语言实例:6、定时器的应用
一、定时器0控制LED闪烁 实例程序1: #include<reg52.h> //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义sbit LED P1^2; //定义LED端口/*------------------------------------------------定时器初始化子程序 …...

ChatGPT Prompting开发实战(五)
一、如何编写有效的prompt 对于大语言模型来说,编写出有效的prompt能够帮助模型更好地理解用户的意图(intents),生成针对用户提问来说是有效的答案,避免用户与模型之间来来回回对话多次但是用户不能从LLM那里得到有意义的反馈。本文通过具体…...

MySQL——DQL union合并、limit限制与DDL建表和删表
一、Union 合并 union:是实现两个查询结果的合并。 例如:当我们查询员工名字为manager 和 salesman的员工名字和 工作? select e.ename,e.job from emp e where e.jobmanager or e.job salesman; select e.ename,e.job from emp e where e.job in(man…...

Java“牵手”唯品会商品列表数据,关键词搜索唯品会商品数据接口,唯品会API申请指南
唯品会商城是一个网上购物平台,售卖各类商品,包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取唯品会商品列表和商品详情页面数据,您可以通过开放平台的接口或者直接访问唯品会商城的网页来获取商品详情信息。以下是两种常用方法的介…...

Springboot整合JWT完成验证登录
目录 一、引入依赖二、JwtUtil 代码解读三、LoginController 代码解读四、整体代码五、结果展示 一、引入依赖 <dependency><groupId>io.jsonwebtoken</groupId><artifactId>jjwt</artifactId><version>0.9.1</version></depende…...

centos7 下使用docker安装常见的软件:Redis
关于docker的基础知识,请见《别在说自己不知道docker了,全文通俗易懂的给你说明白docker的基础与底层原理》 在自己学习的过程中经常会需要动手安装一下常见的工具,本篇就手把手带你用docker安装一遍。 jdk安装 如果先要更换之前的jdk从第…...

sql:SQL优化知识点记录(十五)
(1)MySQL主从复制 我们这里配置一Windows上的MySql做主机,Linux上的MySql做从机,搭建一主一从 测试以下是否能够拼通:从Linux上:167,连接Windows的165 从Windows的165 连接Linux上:…...

vue3+ts 分享海报
安装依赖1. npm install html2canvas --save<div class"flex-box"><div><div v-for"(item,index ) in from.list" :key"index" click"actvieFuntion(index)"><div>{{item}}</div><div :class"…...

Ubuntu23.10将推出全磁盘加密功能,提高系统安全性
Canonical 宣布其即将推出的 Ubuntu 23.10(Mantic Minotaur)将引入基于 TPM 的全磁盘加密的初步支持。这个特性将利用系统可信平台模块(TPM),在系统级别上进行全磁盘加密,从而提高系统的安全性。 但需要注…...
防火墙的设置主要是为了防范什么
防火墙的设置主要是为了防范网络攻击和数据泄露。随着互联网的普及和信息化的加速,网络安全问题越来越受到人们的关注。其中,防火墙是一种常见的网络安全设备,其设置的重要性也日益凸显。 防火墙的设置主要是为了防范什么 防火墙的设置主要目…...

Vim9和其他软件的文本复制、粘贴
大家都知道:在Vim9中使用y和p命令来进行文本的复制和粘贴,今天我来说一说Vim和其他软件之间的文本复制、粘贴操作。 Vim9和其他软件进行复制、粘贴,其原理就是通过系统剪贴板作为中介来执行操作。 一、从Vim9复制文本内容 按住鼠标左键滑出…...

MySQL学习5:事务、存储引擎
事务 简介 事务是一组数据库操作的执行单元,它要么完全执行,要么完全不执行。事务是确保数据库中的数据一致性和完整性的重要机制之一。 事务具有以下四个特性(称为ACID特性): 原子性(Atomicity…...

redis如何保证接口的幂等性
背景 如何防止接口中同样的数据提交,以及如何保证消息不被重复消费,这些都是shigen在学习的过程中遇到的问题。今天,趁着在学习redis的间隙,我写了一篇文章进行简单的实现。 注意:仅使用于单机的场景,对于…...

避坑之路 —— 前后端 json 的注意问题
当我们在进行开发项目的时候,在前后端需要进行数据之间的传输,那么就会需要到json。而json算是字符串中的一种 1.先说一下前端的, 其实这两种都是表示前端希望能收到后端json这样的数据格式,那么我们在后端就需要注意将数据进行转换为json进…...

[构建 Vue 组件库] 小尾巴 UI 组件库 —— 横向商品卡片(仿淘宝)
文章归档于:https://www.yuque.com/u27599042/row3c6 组件库地址 npm:https://www.npmjs.com/package/xwb-ui?activeTabreadmegitee:https://gitee.com/tongchaowei/xwb-ui 下载 npm i xwb-ui配置 按需导入 import {组件名 } from xwb-…...

【Python】Python实现五子棋游戏(带可视化界面)【独一无二】
👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉公众号👈:测试开发自动化【获取源码商业合作】 👉荣__誉👈:阿里云博客专家博主、5…...

用Maloja创建音乐收听统计数据
什么是 Maloja ? Maloja 是简单的自托管音乐记录数据库,用于创建个人收听统计数据。没有推荐,没有社交网络,没有废话。Maloja 是一个跟踪您一段时间内的收听习惯的工具。 官方演示站点:https://maloja.krateng.ch/ 导出…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...