当前位置: 首页 > news >正文

Java中如何进行加锁??

笔者在上篇文章介绍了线程安全的问题,接下来本篇文章就是来讲解如何避免线程安全问题~~
前言:创建两个线程,每个线程都实现对同一个变量count各自自增5W次,我们来看一下代码:

class Counter{private int count=0;public void add(){count++;}public int get(){return count;}
}
public class Main2 {public static void main(String[] args) throws InterruptedException{Counter counter=new Counter();//搞两个线程,两个线程分别对这个count自增5W次//线程1Thread t1=new Thread(()->{for (int i = 0; i < 50000; i++) {counter.add();}});//线程2Thread t2=new Thread(()->{for (int i = 0; i < 50000; i++) {counter.add();}});//启动线程t1.start();t2.start();//等待两个线程执行结束,然后看一下结果t1.join();t2.join();System.out.println(counter.get());//预期结果是10W,但是,实际结果像是一个随机值,每次执行的结果都不一样}
}

上述代码的运行结果是不确定的,是一个随即值,多次刷新重新运行,结果大概率是不一样的~,预期效果个代码的运行结果不一样,这就是Bug——》线程安全问题!
通过加锁来有效避免线程安全问题:
Synchronized是Java中的关键字,可以使用这个关键字来实现加锁的效果~

    public void add(){// count++;synchronized (this){//这里的this可以写任意一个Object对象(基本数据类型不可)//此处写了this就相当于Counter counter=new Counter();中的countercount++;}}

那么,我们来看一下此时代码的运行结果~
在这里插入图片描述符合我们预期的一个效果~
锁有两个核心的操作,加锁和解锁;
此处使用代码块的方式来表示:进入synchronized修饰的代码块的时候,就会触发加锁,出了synchronized代码块就会触发解锁,{ }就相当于WC~~
在上述代码中:synchronized(this)——》this是指:锁对象(在针对哪个对象?)!

如果两个线程针对同一个对象加锁,此时就会出现“锁竞争”(一个线程先拿到锁,另一个线程阻塞等待)!
如果两个线程针对不同的对象加锁,此时不好存在锁竞争,各种获取各自锁即可!
加锁本质上是把并发的变成了串行的~

join()和加锁不一样:
join()是让两个线程完整的进行串行~
加锁是让两个线程的某小部分串行了,大部分都是并发的!!

在这里插入图片描述加锁:在保证线程安全的前提下,同时还能够让代码跑的更快一些,更好的利用CPU,无论如何,加锁都可能导致阻塞,代码阻塞对应程序的效率肯定还是会有影响的,此处虽然加锁了,比不加锁要慢点,肯定还是比串行要更快,同时比不加锁算得更准!!
在这里插入图片描述如果直接给方法使用synchronized修饰,此时就相当于this为加锁对象!!
如果synchronized修饰静态方法static(),此时就算不给this加锁了,而是给类对象加锁!!
在这里插入图片描述更常见的还是自己手动指定一个锁对象:

    //自己手动指定锁对象private Object locker=new Object();public void add(){synchronized (locker){//这里的locker可以写任意一个Object对象(基本数据类型不可)count++;}}

要牢记:如果多个线程尝试对同一对象加锁,此时就会产生锁竞争!!针对不同的锁对象加锁,就不会有锁竞争~

另一个线程不安全的场景:由于内存可见性,所引起的线程不安全~
先写一个带有Bug的代码:

import java.util.Scanner;public class Main3 {public static int flag=0;public static void main(String[] args) {Thread t1=new Thread(()->{while (flag==0){//空着,啥都没有}System.out.println("循环结束,t1结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);System.out.println("请输入一个整数: ");flag=scanner.nextInt();});t1.start();t2.start();}
}

对该段代码的预期效果:t1通过flag=0作为条件,进行循环,初始情况下,将进入循环,t2通过控制台输入一个整数,一旦用户输入非0的值,此时t1的循环就会立即结束,从而t1线程退出!!
但是,实际的效果:输入非0的值之后,t1线程并没有退出,循环没有结束!通过jconsole可以看到t1线程仍然在执行,处在RUNNABLE状态。
实际效果 !=预期效果——》这就是Bug
为啥有这个问题??这就是内存可见性的锅!!
所谓的内存可见性,就是多线程环境下,,编辑器对于代码优化产生了误判,从而引起了Bug,进一步导致了咱们的Bug,咱们的处理方式:就是让编辑器针对这个场景暂停优化!!使用Volatile关键字,被volatile修饰的变量,此时编辑器就会紧张上述优化,从而能够确保每次都是从内存中重新读取数据~
即:针对上述代码的更改:

volatile public static int flag=0;

加上volatile关键字之后,此时编辑器就能够保证每次都是重新从内存读取flag变量的值,此时t2修饰flag,t1就可以立即感知到了,因此t1就可以正确退出了~

volatile不保证原子性(注意)
volatile适用的场景是一个线程读,一个线程写的情况
synchronized则是多个线程写

volatile的这个效果称为:“保证内存可见性”
synchronized不确定能不能保证内存可见性

volatile还有一个效果:禁止指令重排序!指令重排序也是编辑器优化的策略(调整了代码执行的顺序,,让程序更高效,前台也是保证整体逻辑不变)

关于volatile和内存可见性的补充~
网上有效资料:线程修改一个变量,会把这个变量先从主内存读取到工作内存,然后修改工作内存的值,再写回到主内存中~
内存可见性:t1频繁读取主内存,效率比较低,就被优化成直接读取自己的工作内存,t1修改了主内存的结果,由于t1没有读取主内存导致修改不能被识别到!!
工作内存《——》CPU寄存器
主内存《——》内存

相关文章:

Java中如何进行加锁??

笔者在上篇文章介绍了线程安全的问题&#xff0c;接下来本篇文章就是来讲解如何避免线程安全问题~~ 前言&#xff1a;创建两个线程&#xff0c;每个线程都实现对同一个变量count各自自增5W次&#xff0c;我们来看一下代码&#xff1a; class Counter{private int count0;publi…...

Pytorch3D多角度渲染.obj模型

3D理解在从自动驾驶汽车和自主机器人到虚拟现实和增强现实的众多应用中发挥着至关重要的作用。在过去的一年里&#xff0c;PyTorch3D已经成为一个越来越流行的开源框架&#xff0c;用于使用Python进行3D深度学习。值得庆幸的是&#xff0c;PyTorch3D 库背后的人员已经完成了实现…...

MyBatisPlus 基础Mapperr接口:增删改查

MyBatisPlus 基础Mapper接口&#xff1a;增删改查 插入一条数据 代码 Testpublic void insert() {User user new User();user.setId(6L);user.setName("张三");user.setAge(25);user.setEmail("zhangsanexample.com");userMapper.insert(user);}日志 数…...

计算机网络与技术——概述

&#x1f60a;计算机网络与技术——概述 &#x1f47b;前言&#x1f94f;信息时代下计算机网络的发展&#x1f30f;互联网概述&#x1f4e1;计算机网络基本概念&#x1f4e1;互联网发展三阶段&#x1f4e1;互联网的标准化 &#x1f30f;互联网的组成&#x1f4e1;互联网的边缘部…...

详解TCP/IP协议第三篇:通信数据在OSI通信模型的上下传输

文章目录 一:OSI通信模型间数据传输展示 二:应用层到会话层解析 1:应用层 2:表现层 3:会话层...

《C++ primer plus》精炼(OOP部分)——对象和类(2)

“学习是人类成长的喷泉。” - 亚里士多德 文章目录 内联函数对象的方法和属性构造函数和析构函数构造函数的种类使用构造函数析构函数列表初始化 const成员函数this指针对象数组类作用域作用域为类的常量类作用域内的枚举 内联函数 定义位于类声明中的函数自动成为内联函数。…...

一点感受

做了两天企业数字化转型的评委&#xff0c;涉及全国最顶级的公司、最顶级的实际落地项目案例&#xff0c;由企业真实的落地团队亲自当面讲解。主要是为了了解了解真实的一线、真实的客户、真实的应用现状和应用水平。 &#xff08;1&#xff09;现状 我评审的涉及底层技术平台&…...

VirtualBox RockyLinux9 网络连接

有几次都是隔一段时间之后启动虚拟机&#xff0c;用第三方ssh工具就连接不上了。 简单记录一下。 1、VirtualBox设置 2、IP设置 cd /etc/NetworkManager/system-connections/ vim enp0s3.nmconnection[connection] idenp0s3 uuid9c404b41-4636-397c-8feb-5c2ed38ef404 typeet…...

java 实现适配器模式

适配器模式&#xff08;Adapter Pattern&#xff09;是一种结构型设计模式&#xff0c;用于将一个类的接口转换成另一个类的接口&#xff0c;使得原本不兼容的类可以协同工作。适配器模式包括两种类型&#xff1a;类适配器和对象适配器。下面分别介绍这两种类型的实现方式。 类…...

后端常用的Linux命令大全

后端常用的Linux命令大全 基础常用命令 Sudo Command 该命令是“superuser do”的缩写。sudo 是最常用的命令之一&#xff0c;可让你执行需要管理或 root 特权和权限的任务。 使用sudo命令时系统会提示用户重新使用密码进行身份验证。接下来&#xff0c;Linux 系统将记录一…...

C++面向对象

C面向对象知识 内存字节对齐 #pragma pack(n) 表示的是设置n字节对齐,windows默认是8字节&#xff0c;linux是4字节&#xff0c;鲲鹏是4字节 struct A{char a;int b;short c; };char占一个字节&#xff0c;起始偏移为零&#xff0c;int占四个字节&#xff0c;min(8,4)4&#x…...

什么是栈顶缓存技术

假设有一个基于流水线架构的处理器&#xff0c;它需要执行一系列指令。这些指令包括加载数据、执行计算和存储结果。在流水线中&#xff0c;不同阶段的指令可以并行执行。 现在考虑一个简单的情况&#xff0c;其中需要执行以下两个指令&#xff1a; 加载数据指令&#xff1a;…...

TDesign的input标签

目录 一、 新建页面01-todolist 二、 t-input标签、t-button标签 2.1 t-input标签 2.1.1 01-todolist.wxml页面 2.2 01-todolist.json页面 2.3 01-todolist.js页面 2.4 01-todolist.wxss页面 2.2 t-button标签 示例1&#xff1a;bind:change 示例2&#xff1a;bind:…...

从零开始学习 Java:简单易懂的入门指南之Map集合(二十三)

Map集合 1.Map集合1.1Map集合概述和特点1.2Map集合的基本功能1.3Map集合的获取功能1.4Map集合的遍历(方式1)1.5Map集合的遍历(方式2) 2.HashMap集合2.1HashMap集合概述和特点2.2HashMap集合应用案例 3.TreeMap集合3.1TreeMap集合概述和特点3.2TreeMap集合应用案例 1.Map集合 1…...

SpringBoot 拦截org.thymeleaf.exceptions.TemplateInputException异常

SpringBoot 拦截thymeleaf异常 org.thymeleaf.exceptions.TemplateInputException异常 org.thymeleaf.exceptions.TemplateProcessingE xception: Could not parse as each: "message : xxx " (template: “xxxx” - line xx, col xx) thymeleaf异常复现 你是故意的…...

Qt之随机数

介绍使用qsrand和qrand生成随机数。 生成随机数 生成随机数主要用到了函数qsrand和qrand&#xff0c;qsrand用来设置种子点&#xff0c;该种子为qrand生成随机数的起始值。如果不调用qsrand,那么qrand()就会自动调用qsrand(1)&#xff0c;即系统默认将1作为随机数的起始值。使…...

UWB学习——day2

UWB应用 基于上文UWB学习——day1中对UWB技术的相关优势介绍&#xff0c;UWB技术可广泛应用于以下场景。 WPAN&#xff08;无线个域网&#xff09; 基于其高精度&#xff08;亚厘米级&#xff09;、低功耗和高穿透性等特征&#xff0c;在以人为基础的个域网中应用广泛&#…...

使用 multiprocessing 多进程处理批量数据

示例代码 import multiprocessingdef process_data(data):# 这里是处理单个数据的过程return data * 2# 待处理的数据 data [1, 2, 3, 4, 5]def normal_func():# 普通处理方式result []for obj in data:result.append(process_data(obj)return resultdef parallel_func():# …...

React 与 TS 结合使用时组件传参总结

在学习 React 时&#xff0c;我们总会遇到在 TS 和 JS 之间切换来开发多个项目&#xff0c;而有时会忘记 TS 的语法&#xff0c;所以编写一下 React 结合 TS 开发时的一些总结知识点&#xff0c;以便后续回顾用。 向组件传递基础参数&#xff08;字符串、数字和布尔值&#xf…...

性能炸裂c++20协程+iocp/epoll,超轻量高性能异步库开发实战

前言&#xff1a; c20出来有一段时间了。其中一大功能就是终于支持协程了&#xff08;c作为行业大哥大级别的语言&#xff0c;居然到C20才开始支持协程&#xff0c;我也是无力吐槽了&#xff0c;让多少人等了多少年&#xff0c;等了多少青春&#xff09;但千呼万唤他终于还是来…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...