通过位运算打多个标记
通过位运算打多个标记
如何在一个字段上,记录多个标记?
如何在一个字段上,记录不同类型的多个标记?
如何用较少的字段,记录多个标记?
如何在不增加字段的要求下,记录新增的标记?
在实际的开发中,经常有这样的需求,需要用尽可能少的字段,记录多个标记?
比如交易中一个订单,是否发生过支付?是否进行过发货?是否发生过退货退款?是否进行过理赔?
比如社交中一个帖子,是否审核通过?是否被举报过?是否发生过二次编辑,是否要置顶等等
以上场景,最终都是要记录到数据库中的。如果每增加一个类型,都增加一个字段标记是或者否的话,那每行记录的字段数,得增加到多少?
所以我们的诉求是希望通过尽可能少的字段,最好是不要增加数据库的字段,能够记录同时记录多个标记。
这样的场景,一种解决方式是:在数据库中增加一个内容是JSON格式的字段,然后每次往JSON中增加内容。这种方式的好处是比较灵活,增加标记不用修改数据库DDL。而且不需要记录的标记可以不存储,不用占用存储空间。但文本格式毕竟会占用较多的存储空间,随着标记的增加,类似MySQL数据库可能需要调整字符串长度
另一种解决方式是位运算,通过在不同的位置填充0或者1,表示标记的是或者否,有或者没有。大名鼎鼎的布隆过滤器,实现原理也是类似的
比如说一个订单,我们需要记录它是否发生过支付?是否发生过发货?是否发生过退货?那么就可以设计这么几个标记
PAY_FLAG(1L << 1L),
DELIVER_FLAG(1L << 2L),
REFUNR_FLAG(1L << 3L),
然后在订单表中增加一个flag字段,通过位运算,记录订单的不同标记。方法如下
// 设置Flag
public static Long setFlag(Long orderFlag, OrderFlagEnum orderFlagEnum) {orderFlag |= orderFlagEnum.getFlag();return orderFlag;
}
// 清除Flag
public static Long clearFlag(Long orderFlag, OrderFlagEnum orderFlagEnum) {orderFlag &= ~orderFlagEnum.getFlag();return orderFlag;
}// 判断是否设置过某个Flag
public static boolean hasFlag(OrderFlagEnum orderFlagEnum, Long orderFlag) {return (orderFlag & orderFlagEnum.getFlag()) != 0;
}
引申一下,如果需要在一个字段中,记录多个标记,通过位运算,又该怎么实现呢?
比如说想要在一个字段中,记录两个标记。
还是可以通过不同位置标记1还是0实现,比如一个Long型标记,可以在低53位记录一个标记,在高10位记录另一个标记。
// 初始标记
Long flag = 0L;
// 低位需要记录的标记
Long lowFlag = 1L << 11L;
// 高位需要记录的标记
Long highFlag = 1L << 3L;// 设置低位的标记
flag |= lowFlag;
// 设置高位的标记
flag |= (highFlag << 53);// 判断是否设置低位标记
System.out.println((flag & lowFlag) != 0);// true
// 判断是否设置高位标记
System.out.println((flag >> 53L & highFlag) != 0); // true
同理,如果需要在一个字段记录多个标记,只需要划分不同的标记区间就可以了。
比如Java中的读写锁ReentrantReadWriteLock,就是通过在内部表示锁状态的state变量上的低16位,表示写锁,高16位,表示读锁
这里为什么这么设计呢?而不是维护一个读锁,一个写锁?是因为通过CAS的方式,无法一次性操作两个变量
相关文章:
通过位运算打多个标记
通过位运算打多个标记 如何在一个字段上,记录多个标记? 如何在一个字段上,记录不同类型的多个标记? 如何用较少的字段,记录多个标记? 如何在不增加字段的要求下,记录新增的标记? 在实…...
[学习笔记]Node2Vec图神经网络论文精读
参考资料:https://www.bilibili.com/video/BV1BS4y1E7tf/?p12&spm_id_frompageDriver Node2vec简述 DeepWalk的缺点 用完全随机游走,训练节点嵌入向量,仅能反应相邻节点的社群相似信息,无法反映节点的功能角色相似信息。 …...
C# Linq源码分析之Take(五)
概要 本文在C# Linq源码分析之Take(四)的基础上继续从源码角度分析Take的优化方法,主要分析Where.Select.Take的使用案例。 Where.Select.Take的案例分析 该场景模拟我们显示中将EF中与数据库关联的对象进行过滤,然后转换成Web…...
性能监控-grafana+prometheus+node_exporter
Prometheus是一个开源的系统监控和报警工具。它由SoundCloud开发并于2012年发布,后来成为了一个独立的开源项目,并得到了广泛的应用和支持。 Prometheus的主要功能包括采集和存储各种系统和应用程序的监控数据,并提供强大的查询语言PromQL来…...
(STM32H5系列)STM32H573RIT6、STM32H573RIV6、STM32H573ZIT6嵌入式微控制器基于Cortex®-M33内核
一、应用 工业(PLC、工业电机控制、泵和压缩机) 智能家居(空调、冰箱、冰柜、中央警报系统、洗衣机) 个人电子产品(键盘、智能手机、物联网标签、跟踪设备) 智能城市(工业通信、照明控制、数字…...
mysql配置bind-address不生效
1、前言 因为要ip直接访问mysql,故去修改bind-address参数,按照mysql配置文件查找顺序是:/etc/my.cnf、/etc/mysql/my.cnf、~/.my.cnf,服务器上没有 /etc/my.cnf文件,故去修改 /etc/mysql/my.cnf文件,但是一…...
Linux相关指令(下)
cat指令 查看目标文件的内容 常用选项: -b 对非空输出行编号 -n 对输出的所有行编号 -s 不输出多行空行 一个重要思想:linux下一切皆文件,如显示器文件,键盘文件 cat默认从键盘中读取数据再打印 退出可以ctrlc 输入重定向<…...
Codeforces Round 855 (Div 3)(A - F)
Codeforces Round 855 (Div. 3)(A - F) Codeforces Round 855 (Div. 3) A. Is It a Cat?(思维) 思路:先把所有字母变成小写方便判断 , 然后把每一部分取一个字母出来 , 判断和‘meow’是否相同即可。 复杂度 O ( n…...
Friend.tech(FT):社交媒体金融的未来,真的如此美好吗?
Friend.tech(FT)是一个在2023年8月10日正式推出的社交金融平台,它的特点在于允许用户购买和出售创作者的股票(shares),这些股票赋予用户访问创作者内容的权利。FT的推出引发了广泛的关注,吸引了…...
yolov7中Concat之后加注意力模块(最复杂的情况)
1、common.py中找到Concat模块,复制一份 2、要传参进来,dim通道数 3、然后找yolo.py模块,添加 4、yaml里替换 5、和加的位置也有关系...
解除百度安全验证
使用chrome浏览器用百度浏览时,一直弹百度安全验证: 在设置里进行重置: 然后重启浏览器就可以了。...
Codeforces Round 731 (Div 3)(A - F)
Codeforces Round 731 (Div. 3)(A - F) Dashboard - Codeforces Round 731 (Div. 3) - Codeforces A. Shortest Path with Obstacle(思维) 思路:显然要计算 A → B 之间的曼哈顿距离 , 要绕开 F 当且仅当 AB形成的直线平行于坐…...
Python的sort()与sorted()函数详解
目录 sort()函数 sorted()函数 key参数 区别 sort()函数 sort()方法:该方法用于原地对列表进行排序,即直接在原始列表上进行排序操作,并不返回一个新的列表。 my_l…...
用python实现基本数据结构【04/4】
说明 如果需要用到这些知识却没有掌握,则会让人感到沮丧,也可能导致面试被拒。无论是花几天时间“突击”,还是利用零碎的时间持续学习,在数据结构上下点功夫都是值得的。那么Python 中有哪些数据结构呢?列表、字典、集…...
“必抓!”算法
一个程序员一生中可能会邂逅各种各样的算法,但总有那么几种,是作为一个程序员一定会遇见且大概率需要掌握的算法。今天就来聊聊这些十分重要的“必抓!”算法吧~ 你可以从以下几个方面进行创作(仅供参考) 一ÿ…...
【监控系统】Promethus整合Alertmanager监控告警邮件通知
【监控系统】Promethus整合Alertmanager监控告警邮件通知 Alertmanager是一种开源软件,用于管理和报警监视警报。它与Prometheus紧密集成,后者是一种流行的开源监视和警报系统。Alertmanager从多个源接收警报和通知,并根据一组配置规则来决定…...
【韩顺平】Linux基础
目录 1.网络连接三种方式 1.1 桥接模式:虚拟系统可以和外部系统通讯,但是容易造成IP冲突【1-225】 1.2 NAT模式:网络地址转换模式。虚拟系统可以和外部系统通讯,不造成IP冲突。 1.3 主机模式:独立的系统。 2.虚拟机…...
好奇一下各个大模型对华为mate60系列的看法
目前华为Mate60系列手机已上市并获抢购,个人觉得很不错,很好奇各个AI大模型对此事的看法,于是对chatGPT、文心一言、讯飞星火进行了一下粗浅的测试。 题目一(看看三个模型的综合分析能力) “目前华为Mate60系列手机已…...
UMA 2 - Unity Multipurpose Avatar☀️五.如何使用别人的Recipe和创建自己的服饰Recipe
文章目录 🟥 使用别人的Recipe1️⃣ 导入UMA资源效果展示2️⃣ 更新Library3️⃣ 试一下吧🟧 创建自己的服饰Recipe1️⃣ 创建自己的服饰Recipe2️⃣ 选择应用到的Base Recipe3️⃣ 指定显示名 / 佩戴位置 / 隐藏部位4️⃣ 给该服饰Recipe指定Slot / Overlay🚩 赋予Slot�…...
代码随想录训练营第五十六天| 583. 两个字符串的删除操作 、72. 编辑距离
583. 两个字符串的删除操作 题目链接/文章讲解/视频讲解:代码随想录 1.代码展示 //583.两个字符串的删除操作 int minDistance(string word1, string word2) {//step1 构建dp数组,dp[i][j]的含义是要使以i-1为结尾的word1和以j-1为结尾的word2//删除其元…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
