目标检测笔记(十五): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
文章目录
- 一、目标检测介绍
- 二、YOLOX介绍
- 三、源码获取
- 四、环境搭建
- 4.1 环境检测
- 五、数据集准备
- 六、模型训练
- 七、模型验证
- 八、模型测试
一、目标检测介绍
目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的特定目标并确定其位置。通过训练深度学习模型,如卷积神经网络(CNN),可以实现对各种目标的精确检测。常见的目标检测任务包括:人脸检测、行人检测、车辆检测等。目标检测在安防监控、自动驾驶、智能零售等领域具有广泛应用前景。
二、YOLOX介绍
论文链接:YOLOX: Exceeding YOLO Series in 2021
背景:随着物体检测的发展,YOLO系列始终追求实时应用的最佳速度和精度权衡。而且在过去两年中,目标检测学术界的主要进展都集中在无锚检测器 、高级标签分配策略 和端到端(无 NMS)检测器。而YOLOV4和YOLOV5仍然是基于锚的检测器。由于计算资源的限制导致这些优秀的检测器并不能广泛运用。
创新与贡献:
- Backbone。使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
- PAN-FPN。毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块
- Decoupled-Head。是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;
- Anchor-Free。YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;
- 损失函数。YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;
- 样本匹配。YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式
三、源码获取
- 源码:点击
- bubbliiiing的代码:点击
四、环境搭建
我这里的环境安装的方式是根据源码安装的,但是我的代码是下载的bubbliiiing的。
第一步:Install YOLOX from source
cd YOLOX
pip install -v -e . # or python setup.py develop
第二步:安装cuda、torch、torchvision重要的环境。参考这个博客
| 环境 | 版本 |
|---|---|
| python | 3.7.11 |
| cuda | 10.1 |
| torch | 1.8.0+cu101 |
| torchvision | 0.9.0+cu101 |
第三步:安装之后进入到此环境下的代码主目录,在终端运行
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
4.1 环境检测
下载YOLOX-S:点击

下载之后将模型放在下图位置,并修改predict.py路径

然后运行predict.py即可,输入图片路径,将得到下面的结果。
五、数据集准备
通过labelImg标注图片得到xml和原图,分别放置在这两个文件夹下(labelImg的使用可查看这个博客)

这时候就需要将此数据集转换成VOC格式的数据集,方可训练。
通过voc_annotation.py来将数据集进行划分,注意几个地方:
- annotation_mode为0/1/2的时候的区别,代码里面有备注
- classes_path:数据集的类别情况,要改为自己的类别
- 其他地方就是修改路径的问题,改成自己数据集对应的路径
运行后发现
六、模型训练
这时候你会发现在主目录下会得到两个txt文件,一个用于训练一个用于验证。
然后你运行train.py,model_path修改为自己的类别文件路径。然后就可以运行。
python train.py

训练的同时我们也可以通过tensorboard来查看训练损失和其他指标的图


七、模型验证
通过get_map.py来验证模型的准确率、召回率、F1和mAP。(若想要测试集多点,需通过voc_annotation.py来划分数据集的测试集)
python get_map.py
修改的地方:
- map_mode:第一次使用需要设置为0
- classes_path:为自己的类别文件路径
- VOCdevkit_path:为自己的数据集路径
- 还有其他的相关路径的修改

第一次必须使用map_mode = 0才能运行。因为后面有些模式需要结合检测的结果来进行绘制,
由于训练时间问题,我只是简单测试了一下训练效果,没有进行大量的epoch训练,所以效果并不是很好。





八、模型测试
通过predict.py来对模型测试。
修改的地方:
- mode:可选择图片、视频、fps、热力图、转换成onnx模型等
- 还有model_path和classes_path也需要改为自己的(和训练情况一样,model_path为训练好的模型文件)
单张图片

热力图

相关文章:
目标检测笔记(十五): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
文章目录 一、目标检测介绍二、YOLOX介绍三、源码获取四、环境搭建4.1 环境检测 五、数据集准备六、模型训练七、模型验证八、模型测试 一、目标检测介绍 目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的…...
深眸科技自研轻辙视觉引擎,以AI机器视觉赋能杆号牌识别与分拣
电线杆号牌作为电力行业标识的一种,相当于电线杆的“身份证”,担负着宣传电力知识、安全警示的作用,用于户外使用标记输电线路电压等级、线路名称、杆塔编号等,能够清晰地记录电力线路杆的信息,并为电力线路的更改以及…...
Shell命令管理进程
Shell命令管理进程 列出进程 ps命令 top命令 管理后台进程 启动后台进程 查看后台进程 jobs和ps的区别 停止进程 Linux除了是一种多用户操作系统之外,还是一种多任务系统。多任务意味着可以同时运行多个程序。Linux 提供了相关的工具来列出运行中的进程,监视…...
python创建exe文件
1、搭建环境 pip install pyinstaller 2、准备测试代码 exe_test.py import timeprint("hello") print("hello") print("hello") print("hello")time.sleep(5) 注:添加sleep以便在执行exe文件的时候能看到结果 3、生…...
【数据结构】AVL树的插入与验证
文章目录 一、基本概念1.发展背景2.性质 二、实现原理①插入操作1.平衡因子1.1平衡因子的更新1.1.1树的高度变化1.1.2树的高度不变 2. 旋转2.1左旋2.2右旋2.3右左双旋2.4 左右双旋 ②验证1.求二叉树高度2. 判断是否为AVL树 源码总结 一、基本概念 1.发展背景 普通的二叉搜索树…...
9.3.3网络原理(网络层IP)
一.报文: 1.4位版本号:IPv4和IPv6(其它可能是实验室版本). 2.4位首部长度:和TCP一样,可变长,带选项,单位是4字节. 3.8位服务类型 4.16位总长度:IP报头 IP载荷 传输层是不知道载荷长度的,需要网络层来计算. IP报文 - IP报头 IP载荷 TCP报文 TCP载荷 IP载荷(TCP报文) …...
代码随想录算法训练营第四十八天| LeetCode121. 买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III
121. 买卖股票的最佳时机 题目描述: 121. 买卖股票的最佳时机. 解法 dp class Solution(object):def maxProfit(self, prices):if not prices:return 0dp0 0# 0表示不持有股票,1表示持有股票dp1 0-prices[0]for i in range(1,len(prices)):# 当前没有股票# 两…...
C++新经典10--vector以及其使用
vector vector类型是一个标准库中的类型,代表一个容器、集合或者动态数组这样一种概念。既然是容器,那就可以把若干个对象放到里面。当然,这些对象的类型必须相同。简单来说,可以把一堆int型数字放到vector容器中去,复…...
std : : vector
一.简介 std::vector 的底层实现通常基于动态数组(dynamic array),它是一种连续分配的内存块,允许元素的快速随机访问。下面是 std::vector 的一些关键特点和底层实现细节: 连续内存块:std::vector 内部使…...
AJAX学习笔记8 跨域问题及解决方案
AJAX学习笔记7 AJAX实现省市联动_biubiubiu0706的博客-CSDN博客 跨域:指一个域名的网页去请求另外一个域名资源.比如百度页面去请求京东页面资源. 同源与不同源三要素:协议,域名,端口 协议一致,域名一致,端口一致.才算是同源.其他一律不同源 新建项目测试: 1.window.open();…...
webhook--详解(gitee 推送)
一、简介 webhook 是一种基于 HTTP 的回调函数,可在 2 个应用编程接口(API)之间实现轻量级的事件驱动通信。是一种新型的前后端交互方式,一种对客户端-服务器模式的逆转,在传统方法中,客户端从服务器请求数…...
高速路自动驾驶功能HWP功能定义
一、功能定义 高速路自动驾驶功能HWP是指在一般畅通高速公路或城市快速路上驾驶员可以放开双手双脚,同时注意力可在较长时间内从驾驶环境中转移,做一些诸如看手机、接电话、看风景等活动,该系统最低工作速度为60kph。 如上两种不同环境和速度…...
Leetcode113. 路径总和 II
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 官方题解:力扣(LeetCode)官网 - 全…...
分布式锁之redis实现
docker安装redis 拉取镜像 docker pull redis:6.2.6 查看镜像 启动容器并挂载目录 需要挂在的data和redis.conf自行创建即可 docker run --restart always -d -v /usr/local/docker/redis/redis.conf:/usr/local/etc/redis/redis.conf -v /usr/local/docker/redis/data:/dat…...
Idea中如何在一个项目中引入其他子模块?
首先在Settings打开Project Structure,然后找到Modules,点击加号点击import module,将需要引进的module引进来。 然后点击Artifacts 可以看到比如说day22…这个是我现在的项目,day16是我需要引入的。那么就在红色横线上面右键点第…...
UDP协议概述
传输层里比较重要的两个协议,一个是 TCP,一个是 UDP。TCP 是面向连接的,UDP 是面向无连接的。 所谓的建立连接,是为了在客户端和服务端维护连接,而建立一定的数据结构来维护双方交互的状态,用这样的数据结…...
Python-tracemalloc-跟踪内存分配
tracemalloc 模块是一个用于对 python 已申请的内存块进行debug的工具。它能提供以下信息: 定位对象分配内存的位置 按文件、按行统计python的内存块分配情况: 总大小、块的数量以及块平均大小。 对比两个内存快照的差异,以便排查内存泄漏 显示前10项 显示内存…...
02 CSS技巧
02 CSS技巧 clip-path 自定义形状,或者使用自带的属性画圆等circle HTML结构 <body><div class"container"></div> </body>CSS结构 使用*polygon*自定义形状 .container {width: 300px;height: 300px;background-color: re…...
Yarn资源调度器
文章目录 一、Yarn资源调度器1、架构2、Yarn工作机制3、HDFS、YARN、MR关系4、作业提交之HDFS&MapReduce 二、Yarn调度器和调度算法1、先进先出调度器(FIFO)2、容量调度器(Capacity Scheduler)3、公平调度器(Fair …...
android上架备案公钥和md5获取工具
最近很多公司上架遇到了一个问题,就是要提供app的备案证明,现在android上架都需要备案了,但是我们的证书都是通过工具生成的,哪里知道公钥和md5那些东西呢?无论安卓备案还是ios备案都需要提供公钥和md5。 包括ios的备案…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...
【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统
Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...
