当前位置: 首页 > news >正文

目标检测笔记(十五): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)

文章目录

  • 一、目标检测介绍
  • 二、YOLOX介绍
  • 三、源码获取
  • 四、环境搭建
    • 4.1 环境检测
  • 五、数据集准备
  • 六、模型训练
  • 七、模型验证
  • 八、模型测试

一、目标检测介绍

目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的特定目标并确定其位置。通过训练深度学习模型,如卷积神经网络(CNN),可以实现对各种目标的精确检测。常见的目标检测任务包括:人脸检测、行人检测、车辆检测等。目标检测在安防监控、自动驾驶、智能零售等领域具有广泛应用前景。

二、YOLOX介绍

论文链接:YOLOX: Exceeding YOLO Series in 2021

背景:随着物体检测的发展,YOLO系列始终追求实时应用的最佳速度和精度权衡。而且在过去两年中,目标检测学术界的主要进展都集中在无锚检测器 、高级标签分配策略 和端到端(无 NMS)检测器。而YOLOV4和YOLOV5仍然是基于锚的检测器。由于计算资源的限制导致这些优秀的检测器并不能广泛运用。

创新与贡献

  1. Backbone。使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
  2. PAN-FPN。毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块
  3. Decoupled-Head。是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;
  4. Anchor-Free。YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;
  5. 损失函数。YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;
  6. 样本匹配。YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

三、源码获取

  1. 源码:点击
  2. bubbliiiing的代码:点击

四、环境搭建

我这里的环境安装的方式是根据源码安装的,但是我的代码是下载的bubbliiiing的。
第一步:Install YOLOX from source
cd YOLOX
pip install -v -e . # or python setup.py develop

第二步:安装cuda、torch、torchvision重要的环境。参考这个博客

环境版本
python3.7.11
cuda10.1
torch1.8.0+cu101
torchvision0.9.0+cu101

第三步:安装之后进入到此环境下的代码主目录,在终端运行

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

4.1 环境检测

下载YOLOX-S:点击
在这里插入图片描述
下载之后将模型放在下图位置,并修改predict.py路径
在这里插入图片描述
然后运行predict.py即可,输入图片路径,将得到下面的结果。在这里插入图片描述

五、数据集准备

通过labelImg标注图片得到xml和原图,分别放置在这两个文件夹下(labelImg的使用可查看这个博客)
在这里插入图片描述
这时候就需要将此数据集转换成VOC格式的数据集,方可训练。

通过voc_annotation.py来将数据集进行划分,注意几个地方:

  • annotation_mode为0/1/2的时候的区别,代码里面有备注
  • classes_path:数据集的类别情况,要改为自己的类别
  • 其他地方就是修改路径的问题,改成自己数据集对应的路径

运行后发现在这里插入图片描述

六、模型训练

这时候你会发现在主目录下会得到两个txt文件,一个用于训练一个用于验证。
然后你运行train.py,model_path修改为自己的类别文件路径。然后就可以运行。

python train.py

在这里插入图片描述
训练的同时我们也可以通过tensorboard来查看训练损失和其他指标的图
在这里插入图片描述
在这里插入图片描述

七、模型验证

通过get_map.py来验证模型的准确率、召回率、F1和mAP。(若想要测试集多点,需通过voc_annotation.py来划分数据集的测试集)

python get_map.py

修改的地方

  • map_mode:第一次使用需要设置为0
  • classes_path:为自己的类别文件路径
  • VOCdevkit_path:为自己的数据集路径
  • 还有其他的相关路径的修改
    在这里插入图片描述
    第一次必须使用map_mode = 0才能运行。因为后面有些模式需要结合检测的结果来进行绘制,

由于训练时间问题,我只是简单测试了一下训练效果,没有进行大量的epoch训练,所以效果并不是很好
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述在这里插入图片描述

在这里插入图片描述

八、模型测试

通过predict.py来对模型测试。

修改的地方

  • mode:可选择图片、视频、fps、热力图、转换成onnx模型等
  • 还有model_path和classes_path也需要改为自己的(和训练情况一样,model_path为训练好的模型文件)
    单张图片
    在这里插入图片描述
    热力图
    在这里插入图片描述

相关文章:

目标检测笔记(十五): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)

文章目录 一、目标检测介绍二、YOLOX介绍三、源码获取四、环境搭建4.1 环境检测 五、数据集准备六、模型训练七、模型验证八、模型测试 一、目标检测介绍 目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的…...

深眸科技自研轻辙视觉引擎,以AI机器视觉赋能杆号牌识别与分拣

电线杆号牌作为电力行业标识的一种,相当于电线杆的“身份证”,担负着宣传电力知识、安全警示的作用,用于户外使用标记输电线路电压等级、线路名称、杆塔编号等,能够清晰地记录电力线路杆的信息,并为电力线路的更改以及…...

Shell命令管理进程

Shell命令管理进程 列出进程 ps命令 top命令 管理后台进程 启动后台进程 查看后台进程 jobs和ps的区别 停止进程 Linux除了是一种多用户操作系统之外,还是一种多任务系统。多任务意味着可以同时运行多个程序。Linux 提供了相关的工具来列出运行中的进程,监视…...

python创建exe文件

1、搭建环境 pip install pyinstaller 2、准备测试代码 exe_test.py import timeprint("hello") print("hello") print("hello") print("hello")time.sleep(5) 注:添加sleep以便在执行exe文件的时候能看到结果 3、生…...

【数据结构】AVL树的插入与验证

文章目录 一、基本概念1.发展背景2.性质 二、实现原理①插入操作1.平衡因子1.1平衡因子的更新1.1.1树的高度变化1.1.2树的高度不变 2. 旋转2.1左旋2.2右旋2.3右左双旋2.4 左右双旋 ②验证1.求二叉树高度2. 判断是否为AVL树 源码总结 一、基本概念 1.发展背景 普通的二叉搜索树…...

9.3.3网络原理(网络层IP)

一.报文: 1.4位版本号:IPv4和IPv6(其它可能是实验室版本). 2.4位首部长度:和TCP一样,可变长,带选项,单位是4字节. 3.8位服务类型 4.16位总长度:IP报头 IP载荷 传输层是不知道载荷长度的,需要网络层来计算. IP报文 - IP报头 IP载荷 TCP报文 TCP载荷 IP载荷(TCP报文) …...

代码随想录算法训练营第四十八天| LeetCode121. 买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III

121. 买卖股票的最佳时机 题目描述: 121. 买卖股票的最佳时机. 解法 dp class Solution(object):def maxProfit(self, prices):if not prices:return 0dp0 0# 0表示不持有股票,1表示持有股票dp1 0-prices[0]for i in range(1,len(prices)):# 当前没有股票# 两…...

C++新经典10--vector以及其使用

vector vector类型是一个标准库中的类型,代表一个容器、集合或者动态数组这样一种概念。既然是容器,那就可以把若干个对象放到里面。当然,这些对象的类型必须相同。简单来说,可以把一堆int型数字放到vector容器中去,复…...

std : : vector

一.简介 std::vector 的底层实现通常基于动态数组(dynamic array),它是一种连续分配的内存块,允许元素的快速随机访问。下面是 std::vector 的一些关键特点和底层实现细节: 连续内存块:std::vector 内部使…...

AJAX学习笔记8 跨域问题及解决方案

AJAX学习笔记7 AJAX实现省市联动_biubiubiu0706的博客-CSDN博客 跨域:指一个域名的网页去请求另外一个域名资源.比如百度页面去请求京东页面资源. 同源与不同源三要素:协议,域名,端口 协议一致,域名一致,端口一致.才算是同源.其他一律不同源 新建项目测试: 1.window.open();…...

webhook--详解(gitee 推送)

一、简介 webhook 是一种基于 HTTP 的回调函数,可在 2 个应用编程接口(API)之间实现轻量级的事件驱动通信。是一种新型的前后端交互方式,一种对客户端-服务器模式的逆转,在传统方法中,客户端从服务器请求数…...

高速路自动驾驶功能HWP功能定义

一、功能定义 高速路自动驾驶功能HWP是指在一般畅通高速公路或城市快速路上驾驶员可以放开双手双脚,同时注意力可在较长时间内从驾驶环境中转移,做一些诸如看手机、接电话、看风景等活动,该系统最低工作速度为60kph。 如上两种不同环境和速度…...

Leetcode113. 路径总和 II

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 官方题解:力扣(LeetCode)官网 - 全…...

分布式锁之redis实现

docker安装redis 拉取镜像 docker pull redis:6.2.6 查看镜像 启动容器并挂载目录 需要挂在的data和redis.conf自行创建即可 docker run --restart always -d -v /usr/local/docker/redis/redis.conf:/usr/local/etc/redis/redis.conf -v /usr/local/docker/redis/data:/dat…...

Idea中如何在一个项目中引入其他子模块?

首先在Settings打开Project Structure,然后找到Modules,点击加号点击import module,将需要引进的module引进来。 然后点击Artifacts 可以看到比如说day22…这个是我现在的项目,day16是我需要引入的。那么就在红色横线上面右键点第…...

UDP协议概述

传输层里比较重要的两个协议,一个是 TCP,一个是 UDP。TCP 是面向连接的,UDP 是面向无连接的。 所谓的建立连接,是为了在客户端和服务端维护连接,而建立一定的数据结构来维护双方交互的状态,用这样的数据结…...

Python-tracemalloc-跟踪内存分配

tracemalloc 模块是一个用于对 python 已申请的内存块进行debug的工具。它能提供以下信息: 定位对象分配内存的位置 按文件、按行统计python的内存块分配情况: 总大小、块的数量以及块平均大小。 对比两个内存快照的差异,以便排查内存泄漏 显示前10项 显示内存…...

02 CSS技巧

02 CSS技巧 clip-path 自定义形状&#xff0c;或者使用自带的属性画圆等circle HTML结构 <body><div class"container"></div> </body>CSS结构 使用*polygon*自定义形状 .container {width: 300px;height: 300px;background-color: re…...

Yarn资源调度器

文章目录 一、Yarn资源调度器1、架构2、Yarn工作机制3、HDFS、YARN、MR关系4、作业提交之HDFS&MapReduce 二、Yarn调度器和调度算法1、先进先出调度器&#xff08;FIFO&#xff09;2、容量调度器&#xff08;Capacity Scheduler&#xff09;3、公平调度器&#xff08;Fair …...

android上架备案公钥和md5获取工具

最近很多公司上架遇到了一个问题&#xff0c;就是要提供app的备案证明&#xff0c;现在android上架都需要备案了&#xff0c;但是我们的证书都是通过工具生成的&#xff0c;哪里知道公钥和md5那些东西呢&#xff1f;无论安卓备案还是ios备案都需要提供公钥和md5。 包括ios的备案…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...

DeepSeek越强,Kimi越慌?

被DeepSeek吊打的Kimi&#xff0c;还有多少人在用&#xff1f; 去年&#xff0c;月之暗面创始人杨植麟别提有多风光了。90后清华学霸&#xff0c;国产大模型六小虎之一&#xff0c;手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水&#xff0c;单月光是投流就花费2个亿。 疯…...