当前位置: 首页 > news >正文

数据结构算法刷题(29)动态规划

 思路一:回溯:按照选和不选的判断方式,使用回溯来解决这个问题。

class Solution:

    def rob(self, nums: List[int]) -> int:

        n = len(nums) #数组的长度

        def dfs(i):

            if i<0: #到达边界条件后

                return 0 #返回最大金额是0

            res = max(dfs(i-1),dfs(i-2)+nums[i]) #如果选,下一次递归的就是i-2,并且要加上nums[i]的值,如果不选,下一次递归i-1。比较选或者不选的最大值并返回。

            return res

        res = dfs(n-1) #传入的是数组的最大下标

        return res

问题:回溯使用递归,时间复杂度是指数级别的,会超时,那如何让时间降下来?

思路二:有两次相同的计算结果,那就把每个位置的计算结果保存下来,可以把时间缩短。

 

class Solution:

    def rob(self, nums: List[int]) -> int:

        n = len(nums)

        cache = [-1]*n #因为每个位置一定不是负数

        def dfs(i):

            if i<0:

                return 0

            if cache[i] != -1: #当前的位置不是-1,那么这个位置被计算过,直接返回计算的结果

                return cache[i] 

            res = max(dfs(i-1),dfs(i-2)+nums[i])

            cache[i] = res #把当前位置的计算结果保存

            return res

        res = dfs(n-1)

        return res

问题:这种方式的空间复杂度就是O(n),如何将空间复杂度降下来:递推

思路三:我们可以确定的知道每个节点是那几个数归的结果,那把递的过程省略,直接归,也就是从下往上计算结果。

 

 循环对数组下标有要求,所以下标从2开始。

class Solution:

    def rob(self, nums: List[int]) -> int:

        n = len(nums)

        f = [0]*(n+2) #归的数组长度是n+2,每个数组的值是0

        for i,x in enumerate(nums): #遍历nums

            f[i+2] = max(f[i+1],f[i]+x) # 等同于res = max(dfs(i-1),dfs(i-2)+nums[i])

        return f[n+1]

改进空间复杂度:

class Solution:

    def rob(self, nums: List[int]) -> int:

        n = len(nums)

        f0 = f1 = 0

        for i,x in enumerate(nums):

            new_f = max(f1,f0+x)

            f0 = f1

            f1 = new_f

        return f1

思路:

class Solution:

    def climbStairs(self, n: int) -> int:

        dp0 = 1

        dp1 = 1

        if n <= 1:

            return 1

        dp = 0

        for i in range(2,n+1):

            dp = dp0 + dp1

            dp0 = dp1

            dp1 = dp

        return dp

 思路:

 

class Solution:

    def minCostClimbingStairs(self, cost: List[int]) -> int:

        n = len(cost)

        dp0 = 0 #第0级台阶的顶部最小花费是0

        dp1 = min(cost[0],cost[1]) #第1级台阶的顶部台阶的最小花费是cost[0]或cost[1]的最小值

        for i in range(2,n):

            dp = min(dp1+cost[i],dp0+cost[i-1])

            dp0 = dp1

            dp1 = dp

        return dp1

相关文章:

数据结构算法刷题(29)动态规划

思路一&#xff1a;回溯&#xff1a;按照选和不选的判断方式&#xff0c;使用回溯来解决这个问题。 class Solution: def rob(self, nums: List[int]) -> int: n len(nums) #数组的长度 def dfs(i): if i<0: #到达边界条件后 return 0 #返回最大金额是0 res max(dfs(i…...

W11下CMake MinGW配置OpenCV和Qt

&#x1f482; 个人主页:风间琉璃&#x1f91f; 版权: 本文由【风间琉璃】原创、在CSDN首发、需要转载请联系博主&#x1f4ac; 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦 前言 前几天将cuda版本的opencv给编译成功了&#xff0c;当时用的VS的MSVC&…...

反转字符串 反转字符串 || 反转字符串 |||

思想总结&#xff1a;首先将字符串转变为字符数组&#xff0c;再进行遍历并反转字符。 1.反转字符串 代码&#xff1a; class Solution {public void reverseString(char[] s) {reverse(s,0,s.length); //左闭右开}public static void reverse(char[] ch,int i,int j) { 翻转函…...

XML解析 不允许有匹配 _[xX][mM][lL]_ 的处理指令目标

以上错误是在解析xml参数时候报出的。 我这里错误的原因在于&#xff0c;<?xml version\"1.0\" encoding\"UTF-8\"?>少了个空格&#xff0c;参考下图&#xff1a; 下面一行才是对的。...

【C++进阶(五)】STL大法--list模拟实现以及list和vector的对比

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:C从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习C   &#x1f51d;&#x1f51d; list模拟实现 1. 前言2. list类的大致框架与结构…...

Docker安装RabbitMQ集群_亲测成功

先安装Docker Centos7离线安装Docker 华为云arm架构安装Docker RabbitMQ集群模式介绍 RabbitMQ集群搭建和测试总结_亲测 RabbitMQ 有三种模式&#xff1a;单机模式&#xff0c;普通集群模式&#xff0c;镜像集群模式。单机模式即单独运行一个 rabbitmq 实例&#xff0c;而…...

50道基础数据结构面试题

程序员必备的50道数据结构和算法面试题 在本文中&#xff0c;将分享一些常见的编程面试问题&#xff0c;这些问题来自于不同经验水平的程序员&#xff0c;囊括从刚大学毕业的人到具有一到两年经验的程序员。 编码面试主要包括数据结构和基于算法的问题&#xff0c;以及一些诸…...

【Linux基础】权限管理

​&#x1f47b;内容专栏&#xff1a; Linux操作系统基础 &#x1f428;本文概括&#xff1a; 用户之间的切换、sudo提权、Linux权限管理、文件访问权限的相关方法、目录权限、粘滞位等 &#x1f43c;本文作者&#xff1a; 阿四啊 &#x1f438;发布时间&#xff1a;2023.9.11 …...

C++初阶--类和对象(中)

目录 类的6个默认成员函数构造函数使用方法 析构函数使用方法 拷贝构造函数使用方法 赋值运算符重载赋值运算符重载 const成员 上篇末尾我们讲到了关于c实现栈相较于c语言在传递参数时的一些优化&#xff0c;但实际上&#xff0c;c在 初始化 清理 赋值 拷贝等方面也做了很大程…...

【MySQL系列】视图特性

「前言」文章内容大致是MySQL事务管理。 「归属专栏」MySQL 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 视图1.1 视图概念1.2 创建视图1.3 修改互相影响1.4 删除视图1.5 视图规则和限制 视图 1.1 视图概念 视图是一个虚拟表&#xff0c;其内容由查询定义同真实的表一样…...

管理类联考——数学——汇总篇——知识点突破——应用题——最值问题

⛲️ 一、考点讲解 最值问题是应用题中最难的题目&#xff0c;也是考生普遍丢分的题目。最值问题一般要结合函数来分析&#xff0c;一般结合二次函数和平均值定理求解。最值问题的求解步骤是&#xff1a;先设未知变量&#xff0c;然后根据题目建立函数表达式&#xff0c;最后利…...

学习SpringMvc第二战之【SpringMVC之综合案例】

目录 一. 参数传递 1.前期准备工作&#xff08;替换pom.xml中的部分依赖&#xff09; 1.1将log4j替换成为slf4j(将打印语句替换成为日志文件输出结果) 2.正式操作 1.基础传参 1.1创建方法&#xff0c;用于验证传参 1.2构建界面回显 1.3设置访问路径&#xff08;localho…...

【算法日志】单调栈: 单调栈简介及其应用

代码随想录刷题60Day 目录 单调栈简介 单调栈的应用 下次更高温 下一个更大元素1 下一个更大元素2 接雨水 柱状图中最大矩形 单调栈简介 单调栈&#xff08;Monotonic Stack&#xff09;是一种特殊的栈数据结构&#xff0c;它满足元素的单调性&#xff0c;这种单调性需…...

VSCode自动分析代码的插件

今天来给大伙介绍一款非常好用的插件&#xff0c;它能够自动分析代码&#xff0c;并帮你完成代码的编写 效果如下图 首先我们用的是VSCode&#xff0c;&#xff08;免费随便下&#xff09; 找到扩展&#xff0c;搜索CodeGeeX&#xff0c;将它下载好&#xff0c;就可以实现了 到…...

设计模式之外观模式

文章目录 影院管理项目传统方式解决影院管理传统方式解决影院管理问题分析外观模式基本介绍外观模式原理类图外观模式解决影院管理传统方式解决影院管理说明外观模式应用实例 外观模式的注意事项和细节 影院管理项目 组建一个家庭影院&#xff1a; DVD 播放器、投影仪、自动屏…...

Web端测试和 App端测试有何不同?

Web 端测试和 App 端测试是针对不同平台的上的应用进行测试&#xff0c;Web应用和App端的应用实现方式不同&#xff0c;测试时的侧重点也不一样。 今天这篇文章就来介绍下两者的不同之处以及测试时的侧重点。 同时&#xff0c;我也准备了一份软件测试面试视频教程&#xff08…...

12.(Python数模)(相关性分析一)相关系数矩阵

相关系数矩阵 相关系数矩阵是用于衡量多个变量之间关系强度和方向的统计工具。它是一个对称矩阵&#xff0c;其中每个元素表示对应变量之间的相关系数。 要计算相关系数矩阵&#xff0c;首先需要计算每对变量之间的相关系数。常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关…...

系统架构设计师(第二版)学习笔记----嵌入式系统及软件

【原文链接】系统架构设计师&#xff08;第二版&#xff09;学习笔记----嵌入式系统及软件 文章目录 一、嵌入式系统1.1 嵌入式系统的组成1.2 嵌入式系统的特点1.3 嵌入式系统的分类 二、嵌入式软件2.1 嵌入式系统软件分层2.2 嵌入式软件的主要特点 三、安全攸关软件的安全性设…...

Python列表操作指南:索引、切片、遍历与综合应用

文章目录 列表简介创建列表索引和切片列表的长度列表的拼接和重复检查元素是否存在列表的方法index() 方法count() 方法 列表的修改和删除修改元素删除元素列表的排序和反转添加元素 列表的拷贝列表的遍历列表的切片列表的嵌套列表推导式 python精品专栏推荐python基础知识&…...

第15章_锁: MySQL并发访问相同记录以及从数据操作的类型划分锁(读锁、写锁)

事务的 隔离性 由这章讲述的 锁 来实现。 1. 概述 锁是计算机协调多个进程或线程并发访问某一资源的机制. 在程序开发中会存在多线程同步的问题, 当多个线程并发访问某个数据的时候, 尤其是针对一些敏感数据(订单, 金额), 我们就需要保证这个数据在任何时刻最多只有一个线…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

Vue3 PC端 UI组件库我更推荐Naive UI

一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用&#xff0c;前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率&#xff0c;还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库&#xff08;Naive UI、Element …...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源&#xff0c;提供了很全面的思路&#xff0c;减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接&#xff1a;https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架&#xff1a; 代码框架结构&#xff1a;readme有…...