当前位置: 首页 > news >正文

【单目标优化算法】蜣螂优化算法(Dung beetle optimizer,DBO)(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码实现


💥1 概述

本文提出了一种新的基于种群的技术,称为粪甲虫优化器(DBO)算法,其灵感来自于粪甲虫的滚球、跳舞、觅食、偷窃和繁殖行为。新提出的DBO算法同时考虑了全局探索和局部开发,从而具有快速收敛速度和令人满意的解精度的特点。使用一系列众所周知的数学测试函数(包括23个基准函数和29个CEC-BC-2017测试函数)来评估DBO算法的搜索能力。从仿真结果中可以观察到,DBO算法在收敛速度、解的精度和稳定性方面与最先进的优化方法相比具有实质上的竞争性能。

详细文章讲解见第四部分。

📚2 运行结果

 部分代码:

function [fMin , bestX, Convergence_curve ] = DBO(pop, M,c,d,dim,fobj  )
        
   P_percent = 0.2;    % The population size of producers accounts for "P_percent" percent of the total population size       


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( pop *  P_percent );    % The population size of the producers   


lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : pop
    
    x( i, : ) = lb + (ub - lb) .* rand( 1, dim );  
    fit( i ) = fobj( x( i, : ) ) ;                       
end

pFit = fit;                       
pX = x; 
 XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin

 % Start updating the solutions.
for t = 1 : M    
       
        [fmax,B]=max(fit);
        worse= x(B,:);   
       r2=rand(1);
 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i = 1 : pNum    
        if(r2<0.9)
            r1=rand(1);
          a=rand(1,1);
          if (a>0.1)
           a=1;
          else
           a=-1;
          end
    x( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)
       else
            
           aaa= randperm(180,1);
           if ( aaa==0 ||aaa==90 ||aaa==180 )
            x(  i , : ) = pX(  i , :);   
           end
         theta= aaa*pi/180;   
       
       x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      

        end
      
        x(  i , : ) = Bounds( x(i , : ), lb, ub );    
        fit(  i  ) = fobj( x(i , : ) );
    end 
 [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness value
  bestXX = x( bestII, : );             % bestXX denotes the current optimum position 

 R=1-t/M;                           %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 Xnew1 = bestXX.*(1-R); 
     Xnew2 =bestXX.*(1+R);                    %%% Equation (3)
   Xnew1= Bounds( Xnew1, lb, ub );
   Xnew2 = Bounds( Xnew2, lb, ub );
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     Xnew11 = bestX.*(1-R); 
     Xnew22 =bestX.*(1+R);                     %%% Equation (5)
   Xnew11= Bounds( Xnew11, lb, ub );
    Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    for i = ( pNum + 1 ) :12                  % Equation (4)
     x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));
   x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 );
  fit(i ) = fobj(  x(i,:) ) ;
   end
   
  for i = 13: 19                  % Equation (6)

   
        x( i, : )=pX( i , : )+((randn(1)).*(pX( i , : )-Xnew11)+((rand(1,dim)).*(pX( i , : )-Xnew22)));
       x(i, : ) = Bounds( x(i, : ),lb, ub);
       fit(i ) = fobj(  x(i,:) ) ;
  
  end
  
  for j = 20 : pop                 % Equation (7)
       x( j,: )=bestX+randn(1,dim).*((abs(( pX(j,:  )-bestXX)))+(abs(( pX(j,:  )-bestX))))./2;
      x(j, : ) = Bounds( x(j, : ), lb, ub );
      fit(j ) = fobj(  x(j,:) ) ;
  end
   % Update the individual's best fitness vlaue and the global best fitness value
     XX=pX;
    for i = 1 : pop 
        if ( fit( i ) < pFit( i ) )
            pFit( i ) = fit( i );
            pX( i, : ) = x( i, : );
        end
        
        if( pFit( i ) < fMin )
           % fMin= pFit( i );
           fMin= pFit( i );
            bestX = pX( i, : );
          %  a(i)=fMin;
            
        end
    end
  
     Convergence_curve(t)=fMin;
  
    
  
end

% Application of simple limits/bounds
function s = Bounds( s, Lb, Ub)
  % Apply the lower bound vector
  temp = s;
  I = temp < Lb;
  temp(I) = Lb(I);
  
  % Apply the upper bound vector 
  J = temp > Ub;
  temp(J) = Ub(J);
  % Update this new move 
  s = temp;
function S = Boundss( SS, LLb, UUb)
  % Apply the lower bound vector
  temp = SS;
  I = temp < LLb;
  temp(I) = LLb(I);
  
  % Apply the upper bound vector 
  J = temp > UUb;
  temp(J) = UUb(J);
  % Update this new move 
  S = temp;
%---------------------------------------------------------------------------------------------------------------------------
 

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码实现

相关文章:

【单目标优化算法】蜣螂优化算法(Dung beetle optimizer,DBO)(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

【C++】类和对象入门必知

面向过程和面向对象的初步认识类的引入类的定义类的访问限定符封装类的作用域类的实例化类对象模型this指针C语言和C实现Stack的对比面向过程和面向对象的初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解…...

day38 动态规划 | 509、斐波那契数 70、爬楼梯 746、使用最小花费爬楼梯

题目 509、斐波那契数 斐波那契数&#xff0c;通常用 F(n) 表示&#xff0c;形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始&#xff0c;后面的每一项数字都是前面两项数字的和。也就是&#xff1a; F(0) 0&#xff0c;F(1) 1 F(n) F(n - 1) F(n - 2)&#xff0c;其…...

2023年备考软考必须知道的6件事

不知不觉&#xff0c;距离2023年上半年软考也只有不到100天的时间了&#xff0c;报名入口也将在3月13日正式开通&#xff0c;你是正在犹豫是否参加考试? 还是已经开始着手准备复习? 关于软考考试你还有哪些疑问? 2023年备考软考必须知道的6件事&#xff0c;建议收藏&#xf…...

GLOG如何控制输出的小数点位数

1 问题 在小白的蹩脚翻译演绎型博文《GLOG从入门到入门》中&#xff0c;有位热心读者提问说&#xff1a;在保存日志时&#xff0c;浮点型变量的小数位数如何设置&#xff1f; 首先感谢这位“嘻嘻哈哈的地球人”赏光阅读了小白这不太通顺的博客文章&#xff0c;并提出了一个很…...

2022年全国职业院校技能大赛(中职组)网络安全竞赛试题A(6)

目录 模块A 基础设施设置与安全加固 一、项目和任务描述&#xff1a; 二、服务器环境说明 三、具体任务&#xff08;每个任务得分以电子答题卡为准&#xff09; A-1任务一&#xff1a;登录安全加固&#xff08;Windows&#xff09; 1.密码策略 a.密码策略必须同时满足大小…...

Safety-Gym环境配置与安

官网&#xff1a; https://github.com/openai/safety-gym https://github.com/openai/safety-starter-agents 一、安装依赖环境配置 建议使用python 3.7及以下环境&#xff0c;因为官方的safety-rl是基于tensorflow1.13.1实现&#xff0c;而tensorflow1.13.1只能支持python…...

3月再不跳槽,就晚了

从时间节点上来看&#xff0c;3月、4月是每年跳槽的黄金季&#xff01; 以 BAT 为代表的互联网大厂&#xff0c;无论是薪资待遇、还是平台和福利&#xff0c;都一直是求职者眼中的香饽饽&#xff0c;“大厂经历” 在国内就业环境中无异于一块金子招牌。在这金三银四的时间里&a…...

HTTP cookie格式与约束

cookie是前端编程当中经常要使用到的概念&#xff0c;我们可以使用cookie利用浏览器来存放用户的状态信息保存用户做了一些什么事情。session是服务器端维护的状态。session又是如何和cookie关联起来。后面介绍cookie和session的使用。Cookie 是什么&#xff1f;RFC6265, HTTP …...

docker基础

docker基础 docker概述 docker的出现&#xff1f;docker解决思想docker历史docker链接docker能干什么&#xff1f;开发-运维 docker安装 镜像(image)容器(container)仓库(repository)底层原理 docker命令 帮助命令镜像命令 docker-images查看所有本地主机上的镜像docker-searc…...

【微信小程序】--JSON 配置文件作用(三)

&#x1f48c; 所属专栏&#xff1a;【微信小程序开发教程】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#…...

EDA-课设

EDA-课程设计-电子闹钟 一、实验目的 1.掌握多层电路在 QuartusII 集成开发环境中的实现&#xff1b; 2.熟练掌握基于 QuartusII 集成开发环境的组合逻辑电路设计流程&#xff1b; 3.掌握基于 QuartusII 集成开发环境的时序逻辑电路设计流程&#xff1b; 4.理解有限状态机设计…...

C/C++每日一练(20230222)

目录 1. 部分复制字符串(★) 2. 按字典顺序排列问题(★★) 3. 地下城游戏(★★★) 附录 动态规划 1. 部分复制字符串 将字符串2小写字母复制到字符串1&#xff1a;编写程序,输入字符串s2,将其中所有小写字母复制到字符串数组strl中。例如&#xff1a;aal1bb22cc33de4AA55…...

Java API 文档搜索引擎

1. 认识搜索引擎:在搜狗搜索的搜索结果页中, 包含了若干条结果, 每一个结果包含了图标, 标题, 描述, 展示URL等搜索引擎的本质:输入一个查询词, 得到若干个搜索结果, 每个搜索结果包含了标题, 描述, 展示URL和点击URL2. 搜索引擎思路:2.1 搜索的核心思路:当前我们有很多的网页(…...

2023美赛C题Wordle二三问分布预测和难度分类预测

文章目录前言题目介绍人数分布预测首先建立字母词典&#xff0c;加上时间特征数据预处理训练和预测函数保存模型函数位置编码模型及其参数设置模型训练以及训练曲线可视化预测人数分布难度分类预测总结前言 2023美赛选了C题&#xff0c;应该很多人会选&#xff0c;一看就好做&…...

gdb的简单练习

题目来自《ctf安全竞赛入门》1.用vim写代码vim gdb.c#include "stdio.h" #include "stdlib.h" void main() {int i 100;int j 101;if (i j){printf("bingooooooooo.");system("/bin/sh");}elseprintf("error............&quo…...

如何使用python AI快速比对两张人脸图像?

本篇文章的代码块的实现主要是为了能够快速的通过python第三方非标准库对比出两张人脸是否一样。 实现过程比较简单&#xff0c;但是第三方python依赖的安装过程较为曲折&#xff0c;下面是通过实践对比总结出来的能够支持的几个版本&#xff0c;避免大家踩坑。 python版本&a…...

(2)C#传智:变量基础(第二天)

一、注释符 不写注释是流氓&#xff0c;名字瞎起是扯蛋。 注释作用&#xff1a;解释与注销 命名&#xff1a; 以字母、_、开头&#xff0c;里面只能有_与特殊符&#xff0c;其它不得出现如%*&^等。 不能与关键字重复。区分大小写&#xff0c;Num…...

02-mysql高级-

文章目录mysql高级1&#xff0c;约束1.1 概念1.2 分类1.3 非空约束1.4 唯一约束1.5 主键约束1.6 默认约束1.7 约束练习1.8 外键约束1.8.1 概述1.8.2 语法1.8.3 练习2&#xff0c;数据库设计2.1 数据库设计简介2.2 表关系(一对多)mysql高级 今日目标 掌握约束的使用 掌握表关系…...

windows 使用everything 查看文件(夹)存储空间占用

起因 总是那个原因,C: D: E:全都红了,下的游戏太多了,然后就这样了,之前也有过不少这种情况.几年前,就在智能手机上见过类似的功能. 大概就是遍历文件系统,统计每个文件的大小,然后父节点记录所有子节点的和,然后可以显示占用百分比之类的. 经过 在windows 上我最开始使用ex…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...