02JVM_垃圾回收GC
二、垃圾回收GC
在堆里面存放着java的所有对象实例,当对象为“死去”,也就是不再使用的对象,就会进行垃圾回收GC
1.如何判断对象可以回收
1.1引用计数器
介绍
在对象中添加一个引用计数器,当一个对象被其他变量引用时这个对象的引用计数器加1。当某个变量不再引用这个对象时引用计数器减1。当这个引用计数变为0时,这个对象就会被垃圾回收。
优点
判定效率很高
缺点
不完全准确,当两个对象相互引用就判断失效了。当A引用B对象,B引用A对象,然后A和B不再被其他变量引用,垃圾不会回收,出现了垃圾回收失效。

1.2可达性分析算法(Java)
介绍
①要确定一个根对象GC Roots(肯定不会被垃圾回收的对象)作为起始节点,当垃圾回收前会对堆对象进行扫描,判断这些对象是否被根对象引用,如果没有被引用那么这个对象就可以垃圾回收。
②java虚拟机是通过可达性分析判断存活对象

哪些对象可以作为GC Root?
①虚拟机栈中引用的对象
各个线程调用的方法(参数,局部变量)
②本地方法栈中native方法引用的对象
③方法区中类静态属性引用的对象
Java类的引用类型静态变量
④方法区中常量引用的对象
字符串常量池StringTable里的引用
⑤所有被同步锁synchronized持有的对象
⑥java虚拟机内部的引用,核心类
1.3四种引用

1.强引用-不回收
介绍
程序代码中普遍存在的引用赋值“Object obj = new Object()”这种引用关系。
特点
不回收,只要沿着GC Root引用链能够找到这个对象,这个对象就不会被垃圾回收。
2.软引用-内存不足回收
介绍
软引用(间接引用)是一些还有用但非必需的对象,当被软引用关联的对象,系统发生内存溢出钱,会把这些对象列进回收范围进行二次回收。如果这次回收没有足够的内存,会抛出内存溢出异常
特点
当垃圾回收后,此时内存仍不够,软引用关联的对象会进行垃圾回收(内存不够才回收)
3.弱引用-发现就回收
介绍
弱引用是一些还有用但非必需的对象,生存到下一次垃圾回收为止。在系统进行垃圾回收时,发现弱引用,不管系统堆空间是否充足,都会回收软引用关联的对象。
特点
当发生垃圾回收时,弱引用关联的对象都会被回收。(内存不管够不够都回收)
4.虚引用-对象回收跟踪
介绍
当虚引用对象创建时会关联一个引用队列。虚引用在创建时必须提供引用队列作为参数。当垃圾回收准备回收一个对象时,如果发现他是虚引用,在垃圾回收后把这个虚引用加入引用队列,通知应用程序对象的回收情况。
5.终结器引用-引用队列配合
介绍
用于实现对象的finalize()方法。当终结器对象创建时会关联一个引用队列。当准备回收一个对象时,发现是终结器引用,会把终结器引用对象放入引用队列(此时对象没回收)。由Finalizer线程调用该对象的finalize()方法,第二次垃圾回收就会回收此对象。
2.垃圾回收算法
2.1标记清除
什么时候垃圾回收
扫描整个堆对象的过程中,如果发现对象被GC Root引用了,需要保留。如果这个对象没有被GC Root引用,就要进行垃圾回收。
标记清除算法的两个阶段
①把没有引用的对象标记为垃圾。
②把垃圾对象占用的空间释放,清除
③释放不是空间清0,而是把起始地址记录下来,然后将来把创建的新对象存储这个位置

优点
垃圾回收速度快
缺点
产生内存碎片
2.2标记整理
标记整理两个阶段
①把没有引用的对象标记为垃圾
②把可用的对象向前移动,让内存更加紧凑。连续的空间变多。

优点
没有内存碎片
缺点
对象整理过程中需要移动,垃圾回收效率低。
2.3复制
复制两个阶段
①把没有引用的对象标记为垃圾
②把活着的内存分为两块from区和to区。把from区存活的对象复制到to区。然后清空from区,然后交换from和to的位置

优点
没有内存碎片
缺点
占用双倍内存空间
3.分代垃圾回收
介绍
垃圾回收时,JVM结合3种算法协程工作。通过分代的垃圾回收机制,把堆内存划分为2块新生代和老年代,新生代(对象用完丢弃)划分为3个区域:伊甸园,幸存区From,幸存区To。
老年代(对象长时间使用) 不同的区域,算法不同。

工作机制
①创建新的对象占用伊甸园的内存空间,当伊甸园内存满时,触发垃圾回收Minor GC。沿着GC Roots引用链去找,如果对象没有被引用,就进行垃圾标记。然后采用复制的算法把伊甸园存活的对象复制到幸存区To中,并且对象寿命加1。然后交换from和to的位置。

②当伊甸园内存空间再次溢出时,触发第二次垃圾回收Minor GC。沿着GC Roots根引用链进行扫描伊甸园和幸存区。把存活的对象复制到幸存区To中,并且对象寿命加1。然后交换from和to的位置。

③幸存区的对象寿命超过了阈值15,对象利用率高。晋升到老年代。(对象长时间使用)

④当新生代和老年代内存要溢出时,触发Full GC垃圾回收。
总结
①对象首先分配在伊甸园区域
②新生代空间不足时,触发Minor gc。伊甸园和from存活的对象,使用复制算法copy到to中。存活的对象年龄加1.交换from和to。
③minor gc会引发stop the world暂停其他用户的线程。垃圾回收结束,用户恢复运行。
④当对象寿命超过阈值时,会晋升到老年代,最大寿命是15
⑤老年代空间不足,触发Minor gc内存仍不足,那么full gc.
相关JVM参数

4.垃圾回收器
4.1串行垃圾回收器
介绍
①单线程垃圾回收器
②堆内存较小,适合个人电脑
③开启串行垃圾回收器 -XX:+UseSerialGC = Serial + SerialOld
Serial工作新生代,复制算法
SerialOld 工作在老年代,标记整理算法
工作流程
当堆内存要溢出时,触发垃圾回收。让其他线程在安全点停止下来,等待垃圾回收线程的结束。

4.2吞吐量优先:并行
介绍
①多线程
②堆内存较大,多核cpu支持
③让单位时间内,STW时间最短
工作流程
多核CPU中,有4个线程运行。当堆内存要溢出时,触发了垃圾回收。用户线程在安全点停止。此时的垃圾回收器会开启多个线程(跟CPU核数相关)进行垃圾回收。然后恢复其他线程的运行。

相关参数
-XX:+UseParallelGC ~ -XX:+UseParallelOldGC 开启吞吐量优先垃圾回收器
-XX:+UseAdaptiveSizePolicy 自适应大小策略,新生代
-XX:GCTimeRatio=ratio 调整吞吐量
-XX:MaxGCPauseMillis=ms 最大暂停毫秒数
-XX:ParallelGCThreads=n 运行时线程数
4.3响应时间优先
介绍
①多线程
②堆内存交大,多核cpu支持
③尽可能让单次STW时间变短
相关参数
-XX:+UseConcMarkSweepGC~-XX:+UseParNewGC~SerialOld 开启响应时间优先回收器
-XX:ParallelGCThreads=n~-XX:ConcGCThreads=threads 线程数
-XX:CMSInitiatingOccupancyFraction=percent 何时进行垃圾回收
-XX:+CMSScavengeBeforeRemark 新生代垃圾回收
工作流程
当老年代发生内存泄漏,其他线程到达安全点暂停下来,垃圾回收器执行初始标记,用户线程恢复运行。垃圾回收线程进行并发标记,然后进行重新标记工作。垃圾回收线程进行并发清理。

5.G1垃圾回收器
简介
Garbage First
JDK 9默认
适用场景
①同时注重吞吐量和低延迟,默认暂停目标是200ms
②超大堆内存,会将堆划分多个大小相等的Region
③整体上是标记+整理算法,两个区域之间是复制算法。
相关JVM参数
-XX:+UseG1GC 开启G1垃圾回收
-XX:G1HeapRegisonSize=size 设置划分区域的大小
-XX:MaxGCPauseMills=time JVM最大暂停时间的目标值
5.1 G1垃圾回收阶段

1.Young Collection 新生代垃圾收集
①、G1会把堆内存划分成多个相等的区域。每个区域独立作为伊甸园,幸存区,老年代

②、新创建的对象会存储在伊甸园,当伊甸园内存满时会触发新生代垃圾回收机制,会STW。
③、伊甸园存活的对象使用copy算法到幸存区。

④、当幸存区的内存溢出时,触发新生代垃圾回收。幸存区对象存活年龄超过一定时间会晋升到老年代

2. Young Collection+Concurrent Mark新生代垃圾收集+并发标记
①在Young GC时进行GC Root的初始标记
②老年代占用堆空间比例达到阈值时,进行并发标记(不会STW)
-XX:InitiatingHeapOccupancyPercent=percent(默认45%)

3.Mixed Collection混合收集
介绍
会对E、S、O进行全面垃圾回收
①最终标记会STW
②拷贝存活会STW
-XX:MaxGCPauseMillis=ms

E:伊甸园区的存活对象通过复制算法到幸存区中
S:幸存区存活的对象复制到另一个幸存区,符合晋升条件的到老年区
O:老年代区把存活对象复制到另一个老年代区
优先收集垃圾最多的区,目的是达到暂停时间段的目标
5.2 Full GC
1.SerialGC
①新生代内存不足发生的垃圾收集—minor gc
②老年代内存不足发生的垃圾收集—full gc
2.ParallelGC
①新生代内存不足发生的垃圾收集—minor gc
②老年代内存不足发生的垃圾收集—full gc
3.CMS
①新生代内存不足发生的垃圾收集—minor gc
②老年代内存不足,并发失败后才会full gc。
4.G1
①新生代内存不足发生的垃圾收集—minor gc
②老年代内存不足,老年代内存跟堆内存占比达到45%,触发并发标记和混合收集阶段。回收速度>垃圾产生速度,并发垃圾收集阶段。回收速度<垃圾产生速度,此时是full gc
5.3Young Collection跨代引用
1.新生代回收的跨代引用(老年代引用新生代)
①根对象有部分是来自老年代,老年代存活对象比较多,遍历效率低。所以采用CardTable把老年代区域进行细分成一个个的card。每个card是512k。如果老年代的对象引用了新生代的对象,就会把这个card标记为脏卡。只关注脏卡,减少搜索范围。

②脏卡引用了新生代的对象。新生代通过Remembered Set知道对应的脏卡。通过脏卡区域遍历GC Roots

5.4 Remark-重新标记
并发标记阶段的对象处理状态

黑色已经处理完成,存活的对象。灰色是处理当中的。白色是尚未处理的垃圾。
在并发标记阶段可能出现B对C引用,接着断开后C成为垃圾,然后A对C引用。此时C被判成垃圾了。

这个时候需要用到remark
Remark:对对象进行进一步检查,当对象引用发生改变时,会给引用提供一个写屏障(将C加入队列),接着进入重新标记阶段,对队列对象进行检查,有强引用的不标记为垃圾。
5.5 JDK8 u20字符串去重
指令
-XX:+UseStringDeduplication
规则
①将所有新分配的字符串放入一个队列
②当新生代回收时,G1并发检查是否有字符串重复
③如果值一样,让他们引用同一个char[]

优缺点
优点:节约大量内存
缺点:多占用CPU时间,新时代回收时间略微增加
跟String.intern()不一样
①String.intern()关注的是字符串对象
②字符串去重关注的是char[]
③JVM内部使用不同的字符串表
5.6 JDK8 u40并发标记类卸载
所有对象都经过并发标记后,知道哪些类不再使用。当一个类加载器所有类不再使用,则卸载它所加载的所有类
-xx:+ClassUnloadingWithConcurrentMark默认启用
5.7 JDK8 u60 回收巨型对象
①一个对象大于region的一半时,成为巨型对象。
②G1不会对巨型对象进行拷贝
③回收时优先考虑
④G1会跟踪老年代所有incoming引用。这样老年代incoming引用为0的巨型对象在新生代垃圾回收处理掉。

5.8 JDK9 并发标记起始时间的调整
①并发标记必须在堆空间占满前完成,否则退化为FullGC
②JDK 9之前需要使用 -XX:InitiatingHeapOccupancyPercent
③JDK 9可以调整:
-XX:InitiatingHeapOccupancyPercent 用来设置初始值
进行数据采样并动态调整
总会添加一个安全的空挡空间
相关文章:
02JVM_垃圾回收GC
二、垃圾回收GC 在堆里面存放着java的所有对象实例,当对象为“死去”,也就是不再使用的对象,就会进行垃圾回收GC 1.如何判断对象可以回收 1.1引用计数器 介绍 在对象中添加一个引用计数器,当一个对象被其他变量引用时这个对象…...
ARM Linux DIY(八)USB 调试
前言 V3s 带有一个 USB 接口,将其设置为 HOST 或 OTG 模式,这样可以用来接入键盘、鼠标等 USB 外设。 USB 简介 USB 有两种设备:HOST 和 USB 功能设备。 在 USB2.0 中又引入了一个新的概念 OTG,即设备角色可以动态切换。 切换方…...
编程小白的自学笔记十四(python办公自动化创建、复制、移动文件和文件夹)
系列文章目录 编程小白的自学笔记十三(python办公自动化读写文件) 编程小白的自学笔记十二(python爬虫入门四Selenium的使用实例二) 编程小白的自学笔记十一(python爬虫入门三Selenium的使用实例详解) …...
MySQL使用Xtrabackup备份到AWS存储桶
1.安装Xtrabackup cd /tmp wget https://downloads.percona.com/downloads/Percona-XtraBackup-8.0/Percona-XtraBackup-8.0.33-28/binary/redhat/7/x86_64/percona-xtrabackup-80-8.0.33-28.1.el7.x86_64.rpm yum -y localinstall percona-xtrabackup-80-8.0.33-28.1.el7.x86…...
(高阶)Redis 7 第11讲 BIGKEY 优化篇
面试题 问题答案如何在海量数据中查询某一固定前缀的Keyscan生产环境如何限制 keys */FLUSHDB/FLUSHALL 等危险命令,防止误删误用# 修改配置文件 rename-command keys "" rename-command flushdb "" rename-command flushall ""如何使用MEMORY U…...
一阶差分和二阶差分概念及其举例
一阶差分和二阶差分概念及其举例 目录 一阶差分和二阶差分概念及其举例1、一阶差分1.1 概念1.2 举例 2、二阶差分2.1 概念2.2 举例 1、一阶差分 1.1 概念 一阶差分是指对一个数列中的每个元素,计算其与其前一个元素之差的操作。 1.2 举例 举例来说,对…...
使用自定义注解和SpringAOP捕获Service层异常,并处理自定义异常
目录 一 自定义异常二 自定义注解三 注解切面处理类四 使用 一 自定义异常 /*** 自定义参数为null异常*/ public class NoParamsException extends Exception {//用详细信息指定一个异常public NoParamsException(String message){super(message);}//用指定的详细信息和原因构…...
Kotlin(六) 类
目录 创建类 调用类 类的继承------open 构造函数 创建类 创建类和创建java文件一样,选择需要创建的目录New→Kotlin File/Class Kotlin中也是使用class关键字来声明一个类的,这一点和Java一致。现在我们可以在这个类中加入字段和函数来丰富它的功…...
蓝桥杯官网练习题(灌溉)
题目描述 小蓝负责花园的灌溉工作。 花园可以看成一个 n 行 m 列的方格图形。中间有一部分位置上安装有出水管。 小蓝可以控制一个按钮同时打开所有的出水管,打开时,有出水管的位置可以被认为已经灌溉好。 每经过一分钟,水就会向四面扩展…...
数据结构:树的概念和结构
文章目录 1. 树的概念2. 树的结构3. 树的相关概念4. 树的表示孩子表示法双亲表示法孩子兄弟表示法 5. 树在实际中的应用5. 树在实际中的应用 1. 树的概念 树是一种非线性的数据结构,它是由 n (n > 0)个有限结点组成一个具有层次关系的. 把它叫做树是因为它看起来像一棵倒挂的…...
【GIS】栅格转面报错:ERROR 000864输入栅格: 输入不在定义的属性域内。 ERROR 000863: 无效的 GP 数据类型
问题: 栅格转面(矢量)时,ArcGIS窗口显示:ERROR 000864输入栅格: 输入不在定义的属性域内。 ERROR 000863: 无效的 GP 数据类型. 原因: 栅格转面时输入的栅格数据集的字段必须是整型. 解决办法: 使用Spatial Analyst中的转为整型工具,将栅格数据转为整型后再进行栅格转面的操作…...
32 WEB漏洞-文件操作之文件下载读取全解
目录 介绍利用获取数据库配置文件文件名,参数值,目录符号 涉及案例:Pikachu-文件下载测试-参数Zdns-文件下载真实测试-功能点小米路由器-文件读取真实测试-漏洞RoarCTF2019-文件读取真题复现-比赛百度杯2017二月-Zone真题复现-比赛拓展 下载和读取都差不…...
Linux之history、tab、alias、命令执行顺序、管道符以及exit
目录 Linux之history、tab、alias、命令执行顺序、管道符以及exit history历史命令 格式 参数 修改默认记录历史命令条数 案例 案例1 --- 显示history历史记录中出现次数最高的top10 案例2 --- 增加history显示的时间信息 命令与文件名补全 --- tab 命令别名 格式 案…...
vcomp100.dll丢失怎样修复?5个靠谱的修复方法分享
VCOMP100.DLL 是由微软打造的动态链接库,它对于一些图形密集型应用,例如Photoshop,以及多款知名游戏如巫师3的运行至关重要。 如果操作系统在启动应用程序时无法找到此vcomp100.dll,则会出现vcomp100.dll丢失或未找到错误。 如果D…...
Vue3自定义指令(directive)
文章目录 前言一、Vue3指令钩子函数二、自定义指令的两种方式1.局部使用例子1:鉴权例子2:拖拽 2.全局使用例子1:监听宽高指令例子2:监听是否出现在视口 总结 前言 此文章主要讲了vue3中自定义指令的使用,以及一些WebA…...
大数据课程L9——网站流量项目的实时业务处理代码
文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 掌握网站流量项目的SparkStreaming代码; ⚪ 掌握网站流量项目的HBaseUtil代码; ⚪ 掌握网站流量项目的MysqlUtil代码; ⚪ 掌握网站流量项目的LogBean代码; ⚪ 掌握网站流量项目的To…...
【2023最新B站评论爬虫】用python爬取上千条哔哩哔哩评论
文章目录 一、爬取目标二、展示爬取结果三、爬虫代码四、同步视频五、附完整源码 您好,我是 马哥python说,一枚10年程序猿。 一、爬取目标 之前,我分享过一些B站的爬虫: 【Python爬虫案例】用Python爬取李子柒B站视频数据 【Pyt…...
mysql设置max_sp_recursion_depth,sql_mode
mysql 中设置 @@max_sp_recursion_depth select @@max_sp_recursion_depth; 今天在mysql 写存储过程递归调用时,发现老是报错(recovery limit 0(as set by the max_sp_recursion_depth));后来百度下发现 max_sp_recursion_depth设置不对; 这个修改涉及到全局和session级修…...
论文阅读:SERE: Exploring Feature Self-relation for Self-supervised Transformer
Related Work Self-supervised 学习目的是在无人工标注的情况下通过自定制的任务(hand-crafted pretext tasks)学习丰富的表示。 Abstract 使用自监督学习为卷积网络(CNN)学习表示已经被验证对视觉任务有效。作为CNN的一种替代…...
遥感数据与作物模型同化应用:PROSAIL模型、DSSAT模型、参数敏感性分析、数据同化算法、模型耦合、精度验证等主要环节
查看原文>>>遥感数据与作物模型同化实践技术应用 基于过程的作物生长模拟模型DSSAT是现代农业系统研究的有力工具,可以定量描述作物生长发育和产量形成过程及其与气候因子、土壤环境、品种类型和技术措施之间的关系,为不同条件下作物生长发育及…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
