接入 NVIDIA A100、吞吐量提高 10 倍!Milvus GPU 版本使用指南
Milvus 2.3 正式支持 NVIDIA A100!
作为为数不多的支持 GPU 的向量数据库产品,Milvus 2.3 在吞吐量和低延迟方面都带来了显著的变化,尤其是与此前的 CPU 版本相比,不仅吞吐量提高了 10 倍,还能将延迟控制在极低的水准。
不过,正如我前面提到的,鲜有向量数据库支持 GPU,这其中除了有技术门槛较高的因素外,还涉及诸多不确定性的问题。那么,Milvus 为什么要做一件充满挑战的事情?
回想 Milvus 决定支持 GPU 的场景,很多细节仍旧历历在目。当时,随着 LLM 的兴起,用户对于向量数据库的性能提出了更高的要求,尤其是在一些对性能、延迟有着极高要求的场景,只通过 CPU 索引来支撑的难度越来越高,而 GPU 有着非常强大的并行处理能力。
因此,我们决定在 Milvus 2.3 版本中支持 GPU。幸运的是,来自 NVIDIA 的小伙伴给予了我们诸多支持,他们主动给我们提供了Rapid Raft GPU 索引接入 Milvus 的支持代码。在 NVIDIA 和 Milvus 团队的共同努力下,Milvus GPU 版本如约而至。
接下来,我们就来看看如何使用 Milvus GPU 版本。
01.CUDA 驱动安装
首先,在我们的宿主机环境中,需要检查系统中是否已经正确的识别 NVIDIA 显卡,在命令行中输入:
lspci
在输出的设备中,看到 NVIDIA 字段,则说明该系统中已经安装了 NVIDIA 显卡。
00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma]
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.3 Non-VGA unclassified device: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
00:03.0 VGA compatible controller: Amazon.com, Inc. Device 1111
00:04.0 Non-Volatile memory controller: Amazon.com, Inc. Device 8061
00:05.0 Ethernet controller: Amazon.com, Inc. Elastic Network Adapter (ENA)
00:1e.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
00:1f.0 Non-Volatile memory controller: Amazon.com, Inc. NVMe SSD Controller
以上是我的环境中的输出,可以看到其中识别到一张 NVIDIA T4 显卡。
接下来,可以去 NVIDIA 官方网站,添加 repo installer。
https://developer.nvidia.com/cuda-downloads
以 ubuntu 20.04 为例:
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
这里需要注意,如果宿主机没有 cuda 的需要,可以不安装 cuda;如果是 server 版本的操作系统,可以安装 headless 版本驱动;如果是 desktop 版本的系统,可以安装普通版本。
-
server
sudo apt install nvidia-headless-535
sudo apt install nvidia-utils-535
-
desktop
sudo apt install nvidia-driver-535
sudo apt install nvidia-utils-535
安装完成之后,需要重启一下系统,使得驱动生效。重启完成,可以输入:
nvidia-smi
如果可以看到详细的显卡状态,即表示驱动安装 OK。
Milvus GPU 版本镜像使用 cuda 11.8 打包,如果是 NVIDIA Tesla 系列专业显卡,需要的最小驱动版本>=450.80.02;如果是游戏显卡,需要驱动版本>=520.61.05。
Milvus GPU 镜像支持 Compute Capability 为 6.1、7.0、7.5、8.0 的 NVIDIA 显卡,查看显卡型号对应的Compute Capability,请参阅 https://developer.nvidia.com/cuda-gpus。NVIDIA Container Toolkit 安装则参考 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
02.Milvus GPU 可配环境变量
Milvus GPU 版本目前仅支持单个 Milvus 进程单个显卡,Milvus GPU 版本默认使用 device 0 显卡。如果需要使用多卡,可以通过启动多个 Milvus 进程或者容器,然后配合 CUDA_VISIBLE_DEVICES 环境变量来实现多卡部署。
容器环境下,可以通过 -e 来设置该环境变量:
sudo docker run --rm -e NVIDIA_VISIBLE_DEVICES=3 milvusdb/milvus:v2.3.0-gpu-beta
在 docker-compose 环境中,可以通过 device_ids 字段来设置,参考 https://docs.docker.com/compose/gpu-support/
注意,为单个 Milvus 进程或者单个容器配置了多张卡可见,Milvus 也只能使用其中的一张卡。
KNOWHERE_STREAMS_PER_GPU 环境变量可以用来设置 cuda stream 的并发数。适当的调大此参数,有可能获得更好的性能,但是,也会带来更多的显存开销。
KNOWHERE_GPU_MEM_POOL_SIZE 环境变量可以用来设置显存池大小。如果不设置改环境变量,Milvus 会自动分配当前 GPU 的一半内存作为显存池,如果在服务的过程中,出现显存池容量不足,那么 Milvus 会自动尝试再次增加显存池大小,默认上限是整个显存大小。
export KNOWHERE_GPU_MEM_POOL_SIZE=2048;4096
以上设置显存池初始大小为 2048 MB,最大显存池大小为 4096 MB。
如果在一张卡上部署 2 个 Milvus进程,那么,此环境变量一定需要合理的分配,否则 Milvus 会出现显存竞争崩溃的情况。
03.Milvus GPU 编译
本地编译 Milvus GPU 版本需要依赖英伟达提供的 cuda-toolkit,在安装 cuda-toolkit 请先完成 NVIDIA 驱动的安装:
sudo apt install --no-install-recommends cuda-toolkit
本地编译 Milvus GPU 之前,我们需要先安装部分依赖软件以及工具:
sudo apt install python3-pip libopenblas-dev libtbb-dev pkg-config
安装 conan:
pip3 install conan==1.59.0 --user
expoprt PATH=$PATH:~/.local/bin
安装较新版本的 cmake>=3.23,参考 https://apt.kitware.com。golang 的安装可以参考 https://go.dev/doc/install。
make milvus-gpu
启动 milvus standalone 模式:
cd bin
sudo ./milvus run standalone
在配置好 nvidia-docker 或者 docker 替代品的情况下,可以很方便地使用 Milvus 提供的 docker-compose.yml 文件来完成容器化部署。
用户可以从 milvus repo 中获取 docker-compose.yml 文件,地址 https://github.com/milvus-io/milvus/blob/master/deployments/docker/gpu/standalone/docker-compose.yml
docker-compose up -d
至此,便可完成 standalone 模式的 Milvus 部署。
如果用户宿主机有多张显卡,可以通过修改 docker-compose.yml 中的 device_ids 字段来修改映射到 Milvus 的显卡。
以上就是关于 Milvus GPU 版本使用说明的全部内容,大家有任何疑问都可以与我们交流。下一篇文章,我们将详解 Knowhere 2.0,欢迎阅读!
🌟「寻找 AIGC 时代的 CVP 实践之星」 专题活动即将启动!
Zilliz 将联合国内头部大模型厂商一同甄选应用场景, 由双方提供向量数据库与大模型顶级技术专家为用户赋能,一同打磨应用,提升落地效果,赋能业务本身。
如果你的应用也适合 CVP 框架,且正为应用落地和实际效果发愁,可直接申请参与活动,获得最专业的帮助和指导!联系邮箱为 business@zilliz.com。
本文由 mdnice 多平台发布
相关文章:
接入 NVIDIA A100、吞吐量提高 10 倍!Milvus GPU 版本使用指南
Milvus 2.3 正式支持 NVIDIA A100! 作为为数不多的支持 GPU 的向量数据库产品,Milvus 2.3 在吞吐量和低延迟方面都带来了显著的变化,尤其是与此前的 CPU 版本相比,不仅吞吐量提高了 10 倍,还能将延迟控制在极低的水准。…...
php://filter协议在任意文件读取漏洞(附例题)
php://filter php://fiter 中文叫 元器封装,咱也不知道为什么这么翻译,目前我的理解是可以通过这个玩意对上面提到的php IO流进行处理,及现在可以对php的 IO流进行一定操作。 过滤器:及通过php://filter 对php 的IO流进行的具体…...
【Redis】1、NoSQL之Redis的配置及优化
关系数据库与非关系数据库 关系型数据库 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。 SQL 语句(标准数据查询语言)就是一种基于关系型数据库的语言&a…...
9.5QTday6作业
面试题1:c语言中的static和c中的static的用法 在c语言中: 1.static修饰的全局变量作用域限制在当前文件,无法被外部文件所引用。2.static修饰的局部变量延长生命周期,但不改变作用域,同样无法被外部文件所引用。3.st…...
Redis I/O多路复用机制
一、基础回顾 1.1 多路复用要解决什么问题 并发多客户端连接场景,在多路复用之前最简单和典型的方案就是同步阻塞网络IO模型。 这种模式的特点就是用一个进程来处理一个网络连接(一个用户请求),比如一段典型的示例代码如下。 直接调用 recv 函数从一个 socket 上…...
Matlab 2016安装MinGW-w64-4.9.2
Matlab 2016安装MinGW-w64-4.9.2 项目需求:需要将matlab中的.m文件编译为cpp文件 .dll .h .lib。 我相信大家在对matlab2016安装MinGW-w64出现了各种各样的问题。如:4.9.2安装失败;安装了其他版本但是matlab检测不到,或者其他各种…...
Tomcat配置ssl、jar包
Tomcat配置ssl 部署tomcat服务,项目做到用https访问,使用nginx去做,访问任意一个子网站,都是https 或者 医美项目需要 上传jdk 456 tomcat war包 [nginx-stable] namenginx stable repo baseurlhttp://nginx.org/packages/…...
Unity中Shader实现UI去色功能的实现思路
文章目录 前言一、在开发过程中,在UI中会涉及一些需要置灰UI的需求,有很多实现的方法1、做两套纹理,通过程序控制切换2、使用shader实现对纹理去色 二、这里主要记录用shader实现的思路1、基础纹理的采样2、支持组件中的调色3、遮罩功能4、去…...
Python垃圾回收机制详解:引用计数与循环垃圾收集器
文章目录 Python垃圾回收机制引用计数机制循环垃圾收集器小结详细讲解及实操1. 程序中的垃圾问题2. 垃圾的定义3. 自动垃圾回收机制4. 示例:使用del方法删除垃圾对象5. 手动处理垃圾回收6. 结束程序7. 垃圾回收的自动处理8. 结束程序 python精品专栏推荐python基础知…...
自然语言处理应用(三):微调BERT
微调BERT 微调(Fine-tuning)BERT是指在预训练的BERT模型基础上,使用特定领域或任务相关的数据对其进行进一步训练以适应具体任务的需求。BERT(Bidirectional Encoder Representations from Transformers)是一种基于Tr…...
MySQL基础【学习至基本语句】
一、安装与配置 1、安装 yum install -y mysql-server.x86_642、MySQL安装完成后,启动报错,查看MySQL的状态,发现是3306端口被占用 [rootiZ56kkvaq4nlfhZ etc]# systemctl status mysqld.service ● mysqld.service - MySQL 8.0 database …...
Leetcode152. 连续子数组的最大乘积
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。 测试用例的答案是一个 32…...
01_kafka_环境搭建安装_topic管理
文章目录 安装jdk配置主机名Zookeeper 下载与安装Kafka 下载与安装测试集群版安装测试输出 安装jdk 略 配置主机名 hostnamectl set-hostname kafka_1 /etc/sysconfig/network HOSTNAMEkafka_1/etc/hosts ip kafka_1ping kafka_1 测试 Zookeeper 下载与安装 由于 集群…...
Python+Requests+Excel接口测试实战
1、EXCEL文件接口保存方式,如图。 2、然后就是读取EXCEL文件中的数据方法,如下: 1 import xlrd2 3 4 class readExcel(object):5 def __init__(self, path):6 self.path path7 8 property9 def getSheet(self): 10 …...
10:STM32------I2C通信
目录 一:I2C通信协议 1:I2C简历 2:硬件电路 3:I2C时序基本单元 A : 开/ 终条件 2:发送一个字节 3:接收一个字节 4:应答机制 4:I2C时序 1:指定地址写 2:当前地址读 3: 指定地址读 二:MPU6050 1:简历 2:参数 3:硬件电路 4:框图 5:寄存器地址 …...
Git多人开发解决冲突案例
准备工作: 1.创建一个gitee远程仓库https://gitee.com/xxxxxxx.git 2.初始化两个本地git仓库用户,目的是模拟多人协作开发时提交代码发生冲突的场景 3.解决冲突并提交。 进入正题: lisi 通过vim指令修改readme.md文件内容,推送到…...
医疗机构如何维护电力系统?来看看这个小技巧
在现代医疗领域,电力是不可或缺的。从手术室里的手术灯到病房中的呼吸机,医院的各种医疗设备和系统都依赖于稳定的电源供应。 然而,电力中断和紧急情况不可避免,而这些情况下的电力可靠性可能会直接影响病人的生命和健康。为了确保…...
时序预测 | MATLAB实现ELM极限学习机时间序列预测未来
时序预测 | MATLAB实现ELM极限学习机时间序列预测未来 目录 时序预测 | MATLAB实现ELM极限学习机时间序列预测未来预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现ELM极限学习机时间序列预测未来; 2.运行环境Matlab2018及以上,data为数…...
【数据分享】1901-2022年我国省市县镇四级的逐年平均气温数据(免费获取/Shp/Excel格式)
气象数据在日常研究中非常常用,之前我们分享过来自国家青藏高原科学数据中心提供的1901-2022年1km分辨率逐月平均气温栅格数据,2001-2022年我国省市县镇四级的逐月平均气温数据,以及基于该栅格数据处理得到的1901-2022年1km分辨率的逐年平均气…...
【Axure高保真原型】日历日期原型模板
今天和大家分享日历日期的原型模板,包括月计划、周计划、日计划的原型案例,以及日期、时间、月份、区间选择器……具体效果可以点击下方视频观看 【原型预览及下载地址】 Axure 原型 备用地址:Untitled Document 【原型效果】 【原型效果…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
