时序预测 | MATLAB实现ELM极限学习机时间序列预测未来
时序预测 | MATLAB实现ELM极限学习机时间序列预测未来
目录
- 时序预测 | MATLAB实现ELM极限学习机时间序列预测未来
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
1.MATLAB实现ELM极限学习机时间序列预测未来;
2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测,运行主程序ELMTSF即可,其余为函数文件,无需运行;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标。
程序设计
- 完整程序和数据下载方式私信博主回复:MATLAB实现ELM极限学习机时间序列预测未来。
%% 参数设置
%% 训练模型
%% 模型预测%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
function [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% ELMTRAIN Create and Train a Extreme Learning Machine
% Syntax
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% Description
% Input
% P - Input Matrix of Training Set (R*Q)
% T - Output Matrix of Training Set (S*Q)
% N - Number of Hidden Neurons (default = Q)
% TF - Transfer Function:
% 'sig' for Sigmoidal function (default)
% 'sin' for Sine function
% 'hardlim' for Hardlim function
% TYPE - Regression (0,default) or Classification (1)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Output
% IW - Input Weight Matrix (N*R)
% B - Bias Matrix (N*1)
% LW - Layer Weight Matrix (N*S)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Example
% Regression:
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% Classification
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% See also ELMPREDICT
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 2error('ELM:Arguments','Not enough input arguments.');
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 3N = size(P,2);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 4TF = 'sig';
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 5TYPE = 0;
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if size(P,2) ~= size(T,2)error('ELM:Arguments','The columns of P and T must be same.');
end
[R,Q] = size(P);
if TYPE == 1T = ind2vec(T);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[S,Q] = size(T);
% Randomly Generate the Input Weight Matrix
IW = rand(N,R) * 2 - 1;
% Randomly Generate the Bias Matrix
B = rand(N,1);
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
BiasMatrix = repmat(B,1,Q);
% Calculate the Layer Output Matrix H
tempH = IW * P + BiasMatrix;
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
switch TFcase 'sig'H = 1 ./ (1 + exp(-tempH));case 'sin'H = sin(tempH);case 'hardlim'H = hardlim(tempH);
end
% Calculate the Output Weight Matrix
LW = pinv(H') * T';
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
参考资料
[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502
相关文章:

时序预测 | MATLAB实现ELM极限学习机时间序列预测未来
时序预测 | MATLAB实现ELM极限学习机时间序列预测未来 目录 时序预测 | MATLAB实现ELM极限学习机时间序列预测未来预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现ELM极限学习机时间序列预测未来; 2.运行环境Matlab2018及以上,data为数…...

【数据分享】1901-2022年我国省市县镇四级的逐年平均气温数据(免费获取/Shp/Excel格式)
气象数据在日常研究中非常常用,之前我们分享过来自国家青藏高原科学数据中心提供的1901-2022年1km分辨率逐月平均气温栅格数据,2001-2022年我国省市县镇四级的逐月平均气温数据,以及基于该栅格数据处理得到的1901-2022年1km分辨率的逐年平均气…...

【Axure高保真原型】日历日期原型模板
今天和大家分享日历日期的原型模板,包括月计划、周计划、日计划的原型案例,以及日期、时间、月份、区间选择器……具体效果可以点击下方视频观看 【原型预览及下载地址】 Axure 原型 备用地址:Untitled Document 【原型效果】 【原型效果…...

深入了解接口测试:Postman 接口测试指南
在现代软件开发生命周期中,接口测试是一个至关重要的部分。使用 Postman 这一工具,可以轻松地进行 接口测试。以下是一份简单的使用教程,帮助你快速上手。 安装 Postman 首先,你需要在电脑上安装 Postman。你可以从官网上下载并…...

【ROS】Ubuntu20.04+ROS Noetic 配置PX4-v1.12.2和Gazebo11联合仿真环境【教程】
【ROS】Ubuntu20.04ROS Noetic 配置PX4-v-v1.12.2和Gazebo11联合仿真环境【教程】 文章目录 【ROS】Ubuntu20.04ROS Noetic 配置PX4-v-v1.12.2和Gazebo11联合仿真环境【教程】0. 安装UbuntuROS1. 安装依赖2. 安装QGC地面站3. 配置PX4-v1.12.23.1 安装PX43.2 测试PX4是否成功安装…...

Java 代理模式之静态代理与动态代理
1,代理模式 代理模式给某一个对象提供一个代理对象,并由代理对象控制对原对象的引用。通俗的来讲代理模式就是我们生活中常见的中介。 代理模式的目的: (1)通过引入代理对象的方式来间接访问目标对象,防…...

打造基于终端命令行的IDE,Termux配置Vim C++开发环境
Termux配置Vim C开发环境,打造基于终端命令行的IDE 主要利用VimCoc插件,配置C的代码提示等功能。 Termux换源 打开termux,输入termux-change-repo 找到mirrors.tuna.tsinghua.edu.cn,清华源,空格选中,回…...

【初阶C语言】操作符2---表达式求值
前言:本节重点介绍操作符的使用,如,优先级高低、类型转换等 一、逻辑操作符 前言:逻辑操作符包括逻辑与(&&)和逻辑或(||),操作对象:两个 1.逻辑与&…...
代码随想录day50|123. 买卖股票的最佳时机 III188. 买卖股票的最佳时机 IV
123. 买卖股票的最佳时机 III class Solution:def maxProfit(self, prices: List[int]) -> int:dp[[0]*5 for _ in range(len(prices))]dp[0][0]0dp[0][1]-prices[0]dp[0][2]0dp[0][3]-prices[0]dp[0][4]0for i in range(1,len(prices)):dp[i][0] dp[i-1][0]dp[i][1] max…...

Word 表格单元格无法垂直居中
Word使用 由于平时也需要用到word编写一些文档,但是咱们就是用的少,很多操作或者技巧不太清楚,很多小问题处理起来反而需要消耗很多时间,所以在这里记录平时遇到的一些问题。 表格无法垂直居中 类似于上图的情况,总之…...
python实现Flask POST Demo
数据处理逻辑 from flask import Flask, requestapp Flask(__name__)app.route(/, methods[POST]) def index():username request.form[username]password request.form[password]if username "Jhon" and password "1":return f"<html>&l…...
3-Pytorch张量的运算、形状改变、自动微分
3-Pytorch张量的运算、形状改变、自动微分 1 导入必备库2 张量的运算3 张量的算数运算4 一个元素的张量可以使用tensor.item()方法转成标量5 torch.from_numpy()和tensor.numpy()6 张量的变形7 张量的自动微分8 使用with torch.no_grad():包含上下文中使其不再跟踪计算9 使用te…...

用户权限数据转换为用户组列表(3/3) - Excel PY公式
最近Excel圈里的大事情就是微软把PY塞进了Excel单元格,可以作为公式使用,轻松用PY做数据分析。系好安全带,老司机带你玩一把。 实例需求:如下是AD用户的列表,每个用户拥有该应用程序的只读或读写权限,现在需要创建新的…...

VS2022+CMAKE+OPENCV+QT+PCL安装及环境搭建
VS2022安装: Visual Studio 2022安装教程(千字图文详解),手把手带你安装运行VS2022以及背景图设置_vs安装教程_我不是大叔丶的博客-CSDN博客 CMAKE配置: win11下配置vscodecmake_心儿痒痒的博客-CSDN博客 OPENCV配…...

JavaScript的内置类
一、认识包装类型 1.原始类型的包装类 JavaScript的原始类型并非对象类型,所以从理论上来说,它们是没有办法获取属性或者调用方法的。 但是,在开发中会看到,我们会经常这样操作: var message "hello world&q…...
6.英语的十六种时态(三面旗):主动、被动、肯定、否定、一般疑问句、特殊疑问句。
目录 一、do句型(以动词allow举例)。 (1)主动语态表格。 (2)被动语态表格。 (3)否定。 二、be句型(表格里的时态可以参考,查不到对应的资料)…...
SpringBoot连接Redis与Redisson【代码】
系列文章目录 一、SpringBoot连接MySQL数据库实例【tk.mybatis连接mysql数据库】 二、SpringBoot连接Redis与Redisson【代码】 三、SpringBoot整合WebSocket【代码】 四、SpringBoot整合ElasticEearch【代码示例】 文章目录 系列文章目录代码下载地地址一、引入依赖二、修改配…...
ardupilot开发 --- MAVSDK 篇
概述 MAVSDK是各种编程语言的库集合,用于与MAVLink系统(如无人机、相机或地面系统)接口。这些库提供了一个简单的API,用于管理一个或多个车辆,提供对车辆信息和遥测的程序访问,以及对任务、移动和其他操作…...

腾讯云AI超级底座新升级:训练效率提升幅度达到3倍
大模型推动AI进入新纪元,对计算、存储、网络、数据检索及调度容错等方面提出了更高要求。在9月7日举行的2023腾讯全球数字生态大会“AI超级底座专场”上,腾讯云介绍异构计算全新产品矩阵“AI超级底座”及其新能力。 腾讯云副总裁王亚晨在开场致辞中表示&…...

AB测试结果分析
一、假设检验 根据样本(小流量)的观测结果,拒绝或接受关于总体(全部流量)的某个假设,称为假设检验。 假设检验的基本依据是小概率事件原理(小概率事件几乎不发生),如果…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...

基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...