当前位置: 首页 > news >正文

OpenCV之霍夫变换检测直线

霍夫变换

        首先是笛卡尔坐标系到霍夫空间的转换,比如笛卡尔坐标系中有一条直线 y=ax+b。

 笛卡尔坐标系中一条直线,对应霍夫空间的一个点。
反过来同样成立(霍夫空间的一条直线,对应笛卡尔坐标系的一个点)
原理其实很简单
比如
(1)笛卡尔坐标系内y=ax+b 一条直线确定时 它的斜率和截距是确定的 即是a b是确定的,因此到了霍夫空间内就对应一个(a,b) 即是笛卡尔中一条直线对应霍夫空间一个点
(2)笛卡尔坐标系内一个点 比如x1,y1 相当于x1 y1是确定的 在霍夫空间中
b=-xa+y 即是 b=-x1a+y1 代表的是一条直线 即是笛卡尔中一个点对应霍夫空间一条直线
(3)笛卡尔坐标系多个点

 这些点如果共线 就相当于回到了(1) 笛卡尔坐标系中一条直线对应霍夫空间一个点
(4)笛卡尔坐标系多个点 不共线

 (5)但是 如果直线斜率不存在的时候 霍夫空间那就不容易表示
因此我们换成极坐标 一样的转换原理
先求极坐标方程 其中参数从斜率a和截距b变成 极径p和极角θ

比如下面的变换对比

 

具体计算过程举例:

 

 OpenCV C++实现

/*
*参数说明:
*src:待检测的原图像
*rho:以像素为单位的距离分辨率,即距离r离散时的单位长度
*theat:以角度为单位的距离分辨率,即角度Θ离散时的单位长度(取值的步长)
*Threshold:累加器阈值,参数空间中离散化后每个方格被通过的累计次数大于该阈值,则该方格代表的直线被视为在原图像中存在
*lines:检测到的直线极坐标描述的系数数组,每条直线由两个参数表示,分别为直线到原点的距离r和原点到直线的垂线与x轴的夹角
*/
void myHoughLines(Mat src, double rho, double theat, int Threshold, vector<Vec2f>& lines)
{if (src.empty() || rho < 0.1 || theat>360 || theat < 0)return;int row = src.rows;int col = src.cols;Mat gray;if (src.channels() > 1){cvtColor(src, gray, COLOR_BGR2GRAY);}elsesrc.copyTo(gray);int maxDistance = sqrt(src.cols * src.cols + src.rows * src.rows); // 图像任意两点最大距离int houghMat_cols = 360 / theat;        // theat是角度取值的步长  霍夫变换后距离夹角坐标下对应的Mat的宽(一共多少个θ)int houghMat_rows = maxDistance / rho;  // 霍夫坐标距离夹角下对应的Mat的高 就是p的取值个数 Mat houghMat = Mat::zeros(houghMat_rows, houghMat_cols, CV_32FC1); // 存储p和 θ的矩阵//边缘检测Canny(gray, gray, 100, 200, 3);//二值化threshold(gray, gray, 160, 255, THRESH_BINARY);//遍历二值化后的图像for (int i = 0; i < row; i++){for (int j = 0; j < col; j++){if (gray.ptr<uchar>(i)[j] != 0){/*从0到360度遍历角度,得到一组关于距离夹角的离散点,即得到一组关于经过当前点(i,j)按单位角度theat旋转得到的直线*/for (int k = 0; k < 360 / theat; k += theat){// k * CV_PI / 180   是极角 θ double r = i * sin(k * CV_PI / 180) + j * cos(k * CV_PI / 180);// 找哪个(θ,r)  最多 if (r >= 0){   // 直线到原点的距离必须大于0 获得在霍夫变换距离夹角坐标系下对应的Mat的行的下标int r_subscript = r / rho;// 经过该直线的点数加1houghMat.at<float>(r_subscript, k) = houghMat.at<float>(r_subscript, k) + 1;}}}}}/*现在 houghMat 矩阵里面的数值N  是经过这点的线个数(极坐标下)比如说 (行,列)对应 (p, θ)  对应的值就是 经过(p, θ)的线一共N条经过直线的点数N 大于阈值, 则视为在原图中存在该直线  就要这条直线了 */for (int i = 0; i < houghMat_rows; i++){for (int j = 0; j < houghMat_cols; j++){if (houghMat.ptr<float>(i)[j] > Threshold){// line保存直线到原点的距离和直线到坐标原点的垂线和x轴的夹角 求p和θVec2f line(i * rho, j * theat * CV_PI / 180);lines.push_back(line);}}}}

相关文章:

OpenCV之霍夫变换检测直线

霍夫变换 首先是笛卡尔坐标系到霍夫空间的转换&#xff0c;比如笛卡尔坐标系中有一条直线 yaxb。 笛卡尔坐标系中一条直线&#xff0c;对应霍夫空间的一个点。 反过来同样成立&#xff08;霍夫空间的一条直线&#xff0c;对应笛卡尔坐标系的一个点&#xff09; 原理其实很简单 …...

lv3 嵌入式开发-11 Linux下GDB调试工具

目录 1 GDB简介 2 GDB基本命令 3 GDB调试程序 1 GDB简介 GDB是GNU开源组织发布的一个强大的Linux下的程序调试工具。 一般来说&#xff0c;GDB主要帮助你完成下面四个方面的功能&#xff1a; 1、启动你的程序&#xff0c;可以按照你的自定义的要求随心所欲的运行程序&#…...

Zabbix监控平台概念

1.概念 Zabbix是一款开源的、免费的、分布式监控平台支持web管理&#xff0c;WEB界面可以方便管理员使用可以监控硬件服务器CPU温度、风扇转速、操作系统CPU、EME、DISK、I/O、流量宽带、负载、端口、进程等Zabbix是C/S架构&#xff0c;Client客户端和Server端组成 2.Zabbix可…...

【javaSE】 枚举与枚举的使用

文章目录 &#x1f384;枚举的背景及定义⚾枚举特性总结&#xff1a; &#x1f332;枚举的使用&#x1f6a9;switch语句&#x1f6a9;常用方法&#x1f4cc;示例一&#x1f4cc;示例二 &#x1f38d;枚举优点缺点&#x1f334;枚举和反射&#x1f6a9;枚举是否可以通过反射&…...

NetSuite知识会汇编-管理员篇顾问篇2023

本月初&#xff0c;开学之际&#xff0c;我们发布了《NetSuite知识会汇编-用户篇 2023》&#xff0c;这次发布《NetSuite知识会汇编-管理员篇&顾问篇2023》。本篇挑选了近两年NetSuite知识会中的一些文章&#xff0c;涉及开发、权限、系统管理等较深的内容&#xff0c;共19…...

根号分治与多项式的巧妙结合:GYM-104386G

使用范围&#xff1a;序列上对于每种数的计数问题 考虑对每种数的出现次数进行根号分治 如果出现次数很少&#xff0c;直接平方暴力即可 如果很大考虑任意 ( i , j ) (i,j) (i,j)&#xff0c;我们拆一下&#xff0c;再移一下&#xff0c;然后就变成了卷积形式...

通过FTP高速下载几百G数据

基因组下载 (FTP) 常见问题解答 基因组FTP站点有哪些亮点?下载多个基因组组装数据的最简单方法是什么?下载大型数据集的最佳协议是什么?为什么 NCBI 基因组 FTP 站点要重组?我如何及时了解 NCBI 基因组 FTP 站点的变化?...

cudnn-windows-x86_64-8.6.0.163_cuda11-archive 下载

网址不太好访问的话,请从下面我提供的分享下载 Download cuDNN v8.6.0 (October 3rd, 2022), for CUDA 11.x 此资源适配 cuda11.x 将bin和include文件夹里的文件&#xff0c;分别复制到C盘安装CUDA目录的对应文件夹里 安装cuda时自动设置了 CUDA_PATH_V11_8 及path C:\Progra…...

多线程案例(1) - 单例模式

目录 单例模式 饿汉模式 懒汉模式 前言 多线程中有许多非常经典的设计模式&#xff08;这就类似于围棋的棋谱&#xff09;&#xff0c;这是用来解决我们在开发中遇到很多 "经典场景"&#xff0c;简单来说&#xff0c;设计模式就是一份模板&#xff0c;可以套用。…...

Arduino驱动TCS34725传感器(颜色传感器篇)

目录 1、传感器特性 2、硬件原理图 3、控制器和传感器连线图 4、驱动程序 TCS34725是一款低成本,高性价比的RGB全彩颜色识别传感器,传感器通过光学感应来识别物体的表面颜色。...

知识库网站如何搭建?需要注意这五个要点!

正因为知识库提供结构化知识库来记载信息和知识&#xff0c;便于团队沉淀经验、共享资源&#xff0c;形成完整的知识体系并持续进化​&#xff0c;使得它成为当前企业发展新宠。 构建自己/团队的知识库是一个良好的习惯&#xff0c;可以提高工作和学习效率&#xff0c;以下是一…...

【UE虚幻引擎】UE源码版编译、Andorid配置、打包

首先是要下载源码版的UE&#xff0c;我这里下载的是5.2.1 首先要安装Git 在你准备放代码的文件夹下右键点击Git Bash Here 然后可以直接git clone https://github.com/EpicGames/UnrealEngine 不行的话可以直接去官方的Github上下载Zip压缩包后解压 运行里面的Setup.bat&a…...

树和二叉树的相关概念及结构

目录 1.树的概念及结构 1.1 树的概念 1.2 树的相关概念 1.3 树的表示 1.3.1 孩子兄弟表示法 1.3.2 双亲表示法 1.4 树的实际应用 2.二叉树的概念及结构 2.1 二叉树的概念 2.2 特殊的二叉树 2.3 二叉树的性质 2.4 二叉树的存储 2.4.1 顺序存储 2.4.2 链式存储 1.树…...

MySQL安装validate_password_policy插件

功能介绍 validate_password_policy 是插件用于验证密码强度的策略。该参数可以设定三种级别&#xff1a;0代表低&#xff0c;1代表中&#xff0c;2代表高。 validate_password_policy 主要影响密码的强度检查级别&#xff1a; 0/LOW&#xff1a;只检查密码长度。 1/MEDIUM&am…...

数据在内存中的存储——练习3

题目&#xff1a; 3.1 #include <stdio.h> int main() {char a -128;printf("%u\n",a);return 0; }3.2 #include <stdio.h> int main() {char a 128;printf("%u\n",a);return 0; }思路分析&#xff1a; 首先二者极其相似%u是无符号格式进行…...

web-案例

分页插件 登录 事务...

第一章 JAVA入门

文章目录 1.2 Java 的特点1.2.1 简单1.2.2 面向对象1.2.3 与平台无关① 平台与机器指令② C/C程序依赖平台③ Java 虚拟机与字节码1.2.4 多线程1.2.5 动态1.30安装 JDK1.3.1 平台简介0 Java SE②Java EE1.4 Java 程序的开发步骤②保存源文件1.5.2 编译1.8 Java之父-James Gosli…...

二叉树详解(求二叉树的结点个数、深度、第k层的个数、遍历等)

二叉树&#xff0c;是一种特殊的树&#xff0c;特点是树的度小于等于2&#xff08;树的度是整个树的结点的度的最大值&#xff09;&#xff0c;由于该特性&#xff0c;构建二叉树的结点只有三个成员&#xff0c;结点的值和指向结点左、右子树的指针。 typedef int DateType; t…...

Apollo配置中心及Python连接

本文将会介绍如何启动Apollo&#xff0c;在Apollo中配置参数&#xff0c;以及如何使用Python连接Apollo. Apollo介绍 在文章Python之读取配置文件和文章Python之配置文件处理中&#xff0c;笔者分别介绍了如何使用Python来处理ini, yaml, conf等配置文件。这种配置方式比较方便…...

LuatOS-SOC接口文档(air780E)--audio - 多媒体音频

常量 常量 类型 解释 audio.PCM number PCM格式&#xff0c;即原始ADC数据 audio.MORE_DATA number audio.on回调函数传入参数的值&#xff0c;表示底层播放完一段数据&#xff0c;可以传入更多数据 audio.DONE number audio.on回调函数传入参数的值&#xff0c;表示…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...