导数公式及求导法则
目录
基本初等函数的导数公式
求导法则
有理运算法则
复合函数求导法
隐函数求导法
反函数求导法
参数方程求导法
对数求导法

基本初等函数的导数公式
基本初等函数的导数公式包括:
- C'=0
- (x^n)'=nx^(n-1)
- (a^x)'=a^x*lna
- (e^x)'=e^x
- (loga(x))'=1/(xlna)
- (lnx)'=1/x
- (sinx)'=cosx
- (cosx)'=-sinx
以上是基本初等函数的导数公式,希望能对您有所帮助。
对于一些复杂的初等函数,其导数可能比较复杂,需要利用复合函数的求导法则、先取对数再求导等方法进行求解。以下是一些复杂初等函数的导数公式:
- y=tanx y'=1/cos^2x
- y=cotx y'=-1/sin^2x
对于更复杂的函数,需要利用复合函数的求导法则和先取对数再求导等方法进行求解,如计算函数y=lncos(ex)的导数时,需要令y=lnu,u=cos v,v=ex,再根据复合函数的求导法则进行求解。
求导法则
有理运算法则
求导法则包括:
- (u+v)'=u'+v'
- (uv)'=u'v+uv'
- (u/v)'=(u'v-uv')/v^2
- (u^n)'=nu^(n-1)u'
- (sin u)'=cos u u'
- (cos u)'=-sin u u'
- (e^u)'=e^u u'
- (a^u)'=a^u lna u'
- (log_a u)'=1/(u lna)
- (ln u)'=1/u
- (tan u)'=sec^2 u u'
- (cot u)'=-csc^2 u u'
- (sec u)'=sec u tan u u'
- (csc u)'=-csc u cot u u'
- (arcsin u)'=1/sqrt(1-u^2)
- (arccos u)'=-1/sqrt(1-u^2)
- (arctan u)'=1/(1+u^2)
- (arccot u)'=-1/(1+u^2)
复合函数求导法
复合函数求导法是一种求导方法,它适用于由两个或更多基本初等函数通过复合而成的函数。
假设我们有一个复合函数 y = f(u), u = g(x),我们可以使用链式法则来计算它的导数。链式法则告诉我们:
dy/dx = dy/du * du/dx
其中,dy/du 是函数 y = f(u) 对 u 的导数,du/dx 是函数 u = g(x) 对 x 的导数。
为了计算 dy/du 和 du/dx,我们需要知道函数 y = f(u) 和函数 u = g(x) 的具体形式。
例如,假设我们有以下复合函数:
y = sin(x^2)
我们可以将这个函数分解为两个基本初等函数:
y = sin(u), u = x^2
dy/du = cos(u), du/dx = 2x
dy/dx = dy/du * du/dx = cos(u) * 2x = cos(x^2) * 2x
隐函数求导法
对于一个隐函数,我们可以使用隐函数求导法来求解其导数。
假设我们有一个隐函数 F(x, y) = 0,其中y是x的函数,即y = f(x)。
我们可以对F(x, y)进行全微分,得到:
dF = F_x dx + F_y dy
其中,F_x表示F对x的偏导数,F_y表示F对y的偏导数。
由于F(x, y) = 0,所以dF = 0,即:
F_x dx + F_y dy = 0
移项得到:
dy / dx = -F_x / F_y
所以,隐函数y = f(x)的导数为:
f'(x) = dy / dx = -F_x / F_y
其中,F_x和F_y可以通过求偏导数得到。
反函数求导法
反函数求导法是一种求导方法,它适用于由一个函数通过反函数得到的函数。
假设我们有一个函数 y = f(x),它的反函数为 x = g(y)。
我们可以使用反函数求导法来计算 y = f(x) 的导数,即 dy/dx。
根据反函数的定义,我们有:
x = g(y)
dx/dy = g'(y)
由于 y = f(x),所以 x = g(y) = f^(-1)(y)。
因此,dx/dy = g'(y) = [f^(-1)(y)]'。
根据反函数的求导法则,我们有:
dy/dx = 1 / dx/dy
因此,dy/dx = 1 / [f^(-1)(y)]'。
所以,y = f(x) 的导数为:
dy/dx = 1 / [f^(-1)(y)]'
参数方程求导法
参数方程求导法是一种求导方法,它适用于由参数方程表示的函数。
假设我们有一个参数方程:
x = x(t)
y = y(t)
我们可以使用参数方程求导法来计算这个函数的导数 dy/dx。
根据参数方程的定义,我们有:
dx/dt = x'(t)
dy/dt = y'(t)
因此,dy/dx 可以表示为:
dy/dx = (dy/dt) / (dx/dt)
dy/dx = y'(t) / x'(t)
所以,参数方程 x = x(t), y = y(t) 所表示的函数的导数为 dy/dx = y'(t) / x'(t)。
对数求导法
对数求导法是一种求导方法,它适用于由指数函数和对数函数组成的函数。
假设我们有一个函数 y = f(x),其中 f(x) 是一个指数函数和对数函数的组合。
我们可以将 y = f(x) 两边取对数,得到 ln y = ln f(x)。
然后,我们可以对 ln f(x) 进行求导,得到 (ln f(x))' = (ln y)'。
根据链式法则,我们有 (ln f(x))' = f'(x) / f(x)。
因此,我们可以得到 dy/dx = y' = f'(x) / f(x)。
所以,对数求导法可以用来求解由指数函数和对数函数组成的函数的导数。
相关文章:
导数公式及求导法则
目录 基本初等函数的导数公式 求导法则 有理运算法则 复合函数求导法 隐函数求导法 反函数求导法 参数方程求导法 对数求导法 基本初等函数的导数公式 基本初等函数的导数公式包括: C0(x^n)nx^(n-1)(a^x)a^x*lna(e^x)e^x(loga(x))1/(xlna)(lnx)1/x(sinx)cos…...
SpringMVC系列(六)之JSON数据返回以及异常处理机制
目录 前言 一. JSON概述 二. JSON数据返回 1. 导入pom依赖 2. 添加配置文件(spring-mvc.xml) 3. ResponseBody注解使用 4. 效果展示 5. Jackson介绍 三. 全局异常处理 1. 为什么要全局异常处理 2. 异常处理思路 3. 异常处理方式一 4. 异常处…...
民安智库(北京第三方窗口测评)开展汽车消费者焦点小组座谈会调查
民安智库近日开展了一场汽车消费者焦点小组座谈会,旨在深入了解目标消费者对汽车功能的需求和消费习惯,为汽车企业提供有针对性的解决方案。 在焦点小组座谈会中,民安智库公司(第三方市容环境指数测评)邀请了一群具有…...
【CVPR2021】MVDNet论文阅读分析与总结
Challenge: 现有的目标检测器主要融合激光雷达和相机,通常提供丰富和冗余的视觉信息 利用最先进的成像雷达,其分辨率比RadarNet和LiRaNet中使用的分辨率要细得多,提出了一种有效的深度后期融合方法来结合雷达和激光雷达信号。 MV…...
IDEA指定Maven settings file文件未生效
背景:在自己电脑上配置的时候,由于公司项目和我自己的项目的Maven仓库不一致,我就在项目中指定了各自的Maven配置文件。但是我发现公司的项目私有仓库地址IDEA总是识别不到! 俩个配置文件分别是: /Users/sml/Mine/研发…...
swift UI 和UIKIT 如何配合使用
SwiftUI和UIKit可以在同一个iOS应用程序中配合使用。它们是两个不同的用户界面框架,各自有自己的优势和特点。在现实开发中,很多iOS应用程序并不是一开始就完全采用SwiftUI或UIKit,而是根据需要逐步引入SwiftUI或者使用两者共存。 SwiftUI的…...
c语言练习题55:IP 地址⽆效化
IP 地址⽆效化 题⽬描述: 给你⼀个有效的 IPv4 地址 address ,返回这个 IP 地址的⽆效化版本。 所谓⽆效化 IP 地址,其实就是⽤ "[.]" 代替了每个 "."。 • ⽰例 1: 输⼊:address "1.1.1.…...
nvidia-persistenced 常驻
本文地址:blog.lucien.ink/archives/542 发现每次执行 nvidia-smi 都特别慢,发现是需要 nvidia-persistenced 常驻才可以,这个并不会在安装完驱动之后自动配置,需要手动设置一个自启。 cat <<EOF >> /etc/systemd/sy…...
leetcode 42, 58, 14(*)
42. Trapping Rain Water 1.暴力解法(未通过) class Solution { public:int trap(vector<int>& height) {int n height.size();int res 0;for(int i0; i<n; i){int r_max 0, l_max 0;for(int j i; j<n; j)r_max max(r_max, heigh…...
SpringCloud-微服务CAP原则
接上文 SpringCloud-Config配置中心 到此部分即微服务的入门。 总的来说,数据存放的节点数越多,分区容忍性就越高,但要复制更新的次数就越多,一致性就越难保证。同时为了保证一致性,更新所有节点数据所需要的时间就…...
K8S:Yaml文件详解
目录 一.Yaml文件详解 1.Yaml文件格式 2.YAML 语法格式 二.Yaml文件编写及相关概念 1.查看 api 资源版本标签 2.yaml编写案例 (2)Deployment类型编写nginx服务 (3)k8s集群中的port介绍 (5)快速编写yaml文件 …...
机器人连续位姿同步插值轨迹规划—对数四元数、b样条曲线、c2连续位姿同步规划
简介:Smooth orientation planning is benefificial for the working performance and service life of industrial robots, keeping robots from violent impacts and shocks caused by discontinuous orientation planning. Nevertheless, the popular used quate…...
三维模型3DTile格式轻量化压缩的遇到常见问题与处理方法分析
三维模型3DTile格式轻量化压缩的遇到常见问题与处理方法分析 三维模型的轻量化压缩是一项技术挑战,特别是在处理复杂的3DTile格式时。下面列举了一些处理过程中可能遇到的常见问题以及相应的处理方法: 模型精度损失:在进行压缩处理时&#x…...
2023-简单点-开启防火墙后,ping显示请求超时;windows共享盘挂在不上
情景描述 树莓派 挂载 windows共享盘 之前一直可以,突然有一天不行了 ping xxxx不通了 一查,或许是服务器被同事开了防火墙,默认关闭了ping的回显 操作: 开启ping回显cmd ping通了,但是挂载还是不行, 显示 dmesg命…...
华为Java工程师面试题
常见问题: 什么是Java虚拟机(JVM)?它与现实中的计算机有什么不同?Java中的基本数据类型有哪些?它们的范围是什么?什么是引用类型?Java中的引用类型有哪些?什么是对象&am…...
大数据Flink(七十四):SQL的滑动窗口(HOP)
文章目录 SQL的滑动窗口(HOP) SQL的滑动窗口(HOP) 滑动窗口定义:滑动窗口也是将元素指定给固定长度的窗口。与滚动窗口功能一样,也有窗口大小的概念。不一样的地方在于,滑动窗口有另一个参数控制窗口计算的频率(滑动窗口滑动的步长)。因此,如果滑动的步长小于窗口大…...
Hystrix和Sentinel熔断降级设计理念
目录 1 基本介绍2 Hystrix信号量和线程池区别2.1 信号量模式2.2 线程池模式2.3 注意 3 Sentinel介绍 1 基本介绍 Sentinel 和 Hystrix 的原则是一致的: 当检测到调用链路中某个资源出现不稳定的表现,例如请求响应时间长或异常比例升高的时候,则对这个资源…...
获取Windows 10中的照片(旧版)下载
Windows 10中的新版照片应用,目前发现无法直接打开部分iOS设备上存储的照片。需要使用照片(旧版)才行。 但目前应用商店中无法直接搜索到照片(旧版),因此笔者提供如下链接,可以直接访问并呼出W…...
【Redis】Redis作为缓存
【Redis】Redis常见面试题(2) 文章目录 【Redis】Redis常见面试题(2)1. 缓存2. Redis作为缓存2.1 缓存雪崩2.2 缓存穿透2.3 缓存击穿2.4 缓存雪崩、缓存穿透、缓存击穿的区别2.5 缓存预热2.6 如何保证缓存和MySQL双写一致 【Redis…...
IDEA(2023)解决运行乱码问题
😇作者介绍:一个有梦想、有理想、有目标的,且渴望能够学有所成的追梦人。 🎆学习格言:不读书的人,思想就会停止。——狄德罗 ⛪️个人主页:进入博主主页 🗼专栏系列:无 🌼…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
