《动手学深度学习 Pytorch版》 4.10 实战Kaggle比赛:预测比赛
4.10.1 下载和缓存数据集
import hashlib
import os
import tarfile
import zipfile
import requests#@save
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
def download(name, cache_dir=os.path.join('..', 'data')): #@save"""下载一个DATA_HUB中的文件,返回本地文件名"""assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"url, sha1_hash = DATA_HUB[name]os.makedirs(cache_dir, exist_ok=True)fname = os.path.join(cache_dir, url.split('/')[-1])if os.path.exists(fname):sha1 = hashlib.sha1()with open(fname, 'rb') as f:while True:data = f.read(1048576)if not data:breaksha1.update(data)if sha1.hexdigest() == sha1_hash:return fname # 命中缓存print(f'正在从{url}下载{fname}...')r = requests.get(url, stream=True, verify=True)with open(fname, 'wb') as f:f.write(r.content)return fname
def download_extract(name, folder=None): #@save"""下载并解压zip/tar文件"""fname = download(name)base_dir = os.path.dirname(fname)data_dir, ext = os.path.splitext(fname)if ext == '.zip':fp = zipfile.ZipFile(fname, 'r')elif ext in ('.tar', '.gz'):fp = tarfile.open(fname, 'r')else:assert False, '只有zip/tar文件可以被解压缩'fp.extractall(base_dir)return os.path.join(base_dir, folder) if folder else data_dirdef download_all(): #@save"""下载DATA_HUB中的所有文件"""for name in DATA_HUB:download(name)
4.10.2 Kaggle
好久没用的老帐号给我删了?
4.10.3 访问和读取数据集
%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
# 使用前面定义的脚本下载并缓存数据DATA_HUB['kaggle_house_train'] = ( #@saveDATA_URL + 'kaggle_house_pred_train.csv','585e9cc93e70b39160e7921475f9bcd7d31219ce')DATA_HUB['kaggle_house_test'] = ( #@saveDATA_URL + 'kaggle_house_pred_test.csv','fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
# 使用pandas分别加载数据train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))
print(train_data.shape)
print(test_data.shape)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]) # 查看前四个和后两个
(1460, 81)
(1459, 80)Id MSSubClass MSZoning LotFrontage SaleType SaleCondition SalePrice
0 1 60 RL 65.0 WD Normal 208500
1 2 20 RL 80.0 WD Normal 181500
2 3 60 RL 68.0 WD Normal 223500
3 4 70 RL 60.0 WD Abnorml 140000
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:])) # 删除不带预测信息的Id
4.10.4 数据预处理
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index # 定位数值列
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std())) # 标准化数据
all_features[numeric_features] = all_features[numeric_features].fillna(0) # 将缺失值设为0
# 处理离散值 “Dummy_na=True”将“na”(缺失值)视为有效的特征值,并为其创建指示符特征all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape
(2919, 331)
n_train = train_data.shape[0] # 获取样本数
# 从pandas格式中提取NumPy格式,并将其转换为张量表示用于训练
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
4.10.5 训练
# 整一个带有损失平方的线性模型作为基线模型loss = nn.MSELoss()
in_features = train_features.shape[1]def get_net():# net = nn.Sequential(nn.Linear(in_features, 1))net = nn.Sequential(nn.Linear(in_features, 256),nn.ReLU(),nn.Linear(256, 64),nn.ReLU(),nn.Linear(64, 1))return net
# 由于房价预测更在意相对误差,故进行取对数处理def log_rmse(net, features, labels):clipped_preds = torch.clamp(net(features), 1, float('inf')) # 将房价范围限制在1到无穷大,进一步稳定其值rmse = torch.sqrt(loss(torch.log(clipped_preds),torch.log(labels))) # 取对数再算均方根误差return rmse.item()
# 使用对学习率不敏感的Adam优化器def train(net, train_features, train_labels, test_features, test_labels,num_epochs, learning_rate, weight_decay, batch_size):train_ls, test_ls = [], []train_iter = d2l.load_array((train_features, train_labels), batch_size) # 加载训练集数据optimizer = torch.optim.Adam(net.parameters(),lr = learning_rate,weight_decay = weight_decay) # 使用Adam优化算法for epoch in range(num_epochs):for X, y in train_iter:optimizer.zero_grad()l = loss(net(X), y)l.backward()optimizer.step()train_ls.append(log_rmse(net, train_features, train_labels))if test_labels is not None:test_ls.append(log_rmse(net, test_features, test_labels))return train_ls, test_ls
4.10.6 K折交叉验证
def get_k_fold_data(k, i, X, y):assert k > 1fold_size = X.shape[0] // k # 计算子集数据量X_train, y_train = None, Nonefor j in range(k):idx = slice(j * fold_size, (j + 1) * fold_size)X_part, y_part = X[idx, :], y[idx] # 截取当前子集数据if j == i:X_valid, y_valid = X_part, y_partelif X_train is None:X_train, y_train = X_part, y_partelse:X_train = torch.cat([X_train, X_part], 0)y_train = torch.cat([y_train, y_part], 0)return X_train, y_train, X_valid, y_valid
# 完成训练后需要求误差的平均值def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,batch_size):train_l_sum, valid_l_sum = 0, 0for i in range(k):data = get_k_fold_data(k, i, X_train, y_train)net = get_net()train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,weight_decay, batch_size)train_l_sum += train_ls[-1]valid_l_sum += valid_ls[-1]if i == 0:d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],legend=['train', 'valid'], yscale='log')print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, 'f'验证log rmse{float(valid_ls[-1]):f}')return train_l_sum / k, valid_l_sum / k
4.10.7 模型选择
k, num_epochs, lr, weight_decay, batch_size = 10, 100, 0.03, 0.05, 256
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, 'f'平均验证log rmse: {float(valid_l):f}')
折1,训练log rmse0.099098, 验证log rmse0.162470
折2,训练log rmse0.091712, 验证log rmse0.114310
折3,训练log rmse0.107151, 验证log rmse0.151471
折4,训练log rmse0.103659, 验证log rmse0.167303
折5,训练log rmse0.102100, 验证log rmse0.165151
折6,训练log rmse0.110199, 验证log rmse0.131012
折7,训练log rmse0.105075, 验证log rmse0.146769
折8,训练log rmse0.109164, 验证log rmse0.123824
折9,训练log rmse0.096305, 验证log rmse0.174747
折10,训练log rmse0.096146, 验证log rmse0.136332
10-折验证: 平均训练log rmse: 0.102061, 平均验证log rmse: 0.147339
4.10.8 提交 Kaggle 预测
def train_and_pred(train_features, test_features, train_labels, test_data,num_epochs, lr, weight_decay, batch_size):net = get_net()train_ls, _ = train(net, train_features, train_labels, None, None,num_epochs, lr, weight_decay, batch_size)d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',ylabel='log rmse', xlim=[1, num_epochs], yscale='log')print(f'训练log rmse:{float(train_ls[-1]):f}')# 将网络应用于测试集。preds = net(test_features).detach().numpy()# 将其重新格式化以导出到Kaggletest_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data,num_epochs, lr, weight_decay, batch_size)
训练log rmse:0.091832
相关文章:

《动手学深度学习 Pytorch版》 4.10 实战Kaggle比赛:预测比赛
4.10.1 下载和缓存数据集 import hashlib import os import tarfile import zipfile import requests#save DATA_HUB dict() DATA_URL http://d2l-data.s3-accelerate.amazonaws.com/def download(name, cache_diros.path.join(.., data)): #save"""下载一个…...
jQuery补充
文章目录 简介安装语法选择器元素选择器#id 选择器.class 选择器事件常用事件方法 效果显示隐藏淡入淡出滑动动画停止动画获取内容和属性添加元素删除元素操作css父辈 💛💛孔子云:温故而知新,可以为师矣💛💛…...

goaccess 日志分析 nginx
分析命令: goaccess -a -d -f /mnt/winshare/access-2023070112.log -p goaccess.conf -o /mydata/nginx/html/2023070112_new.html分析日志时的参数 goaccess使用参数详解-a 开启 UserAgent 列表。开启后会降低解析速度 -c 在程序开始运行时显示 日志/日期 配…...

认养一头牛———众筹+合伙人商业模式解析
2016年成立以来,认养一头牛致力于打造数字化乳业第一品牌,只为一杯好牛奶。公司在创立三年内完成了10个亿销售目标,被业界称为新消费品牌黑马,一举闯入互联网新消费梯队的视线。未来三年,认养一头牛将着力打造全国最大…...
前端面试的话术集锦第 11 篇:高频考点(React和Vue两大框架)
这是记录前端面试的话术集锦第十一篇博文——高频考点(React和Vue两大框架),我会不断更新该博文。❗❗❗ React 和Vue应该是国内当下最火热的前端框架。当然,Angular也是一个不错的框架,但是这个产品,国内使用的人很少,因而,框架的章节中不会涉及到Angular的内容。 这…...

前端js下载zip文件异常问题解决
目录 一,本文解决问题如下 二,原下载代码 1,ajax get 下载文件 2,下载异常图: 三,成功下载的 1, JQuery 实现文件下载xhr 2,图例 引言: 本人使用的ajax 下载&…...

深度学习面试八股文(2023.9.06)
一、优化器 1、SGD是什么? 批梯度下降(Batch gradient descent):遍历全部数据集算一次损失函数,计算量开销大,计算速度慢,不支持在线学习。随机梯度下降(Stochastic gradient desc…...

Linux入门-网络基础|网络协议|OSI七层模型|TCP/IP五层模型|网络传输基本流程
文章目录 一、网络基础 二、网络协议 1.OSI七层模型 2.TCP/IP五层(或四层)模型 三、网络传输基本流程 1.网络传输流程图 2.数据包封装和分用 四、网络中的地址管理 1.IP地址 2.MAC地址 一、网络基础 网络发展最初是独立模式,即计算…...

docker系列(2) - 常用命令篇
文章目录 2. docker常用命令2.1 参数说明(tomcat案例)2.2 基本命令2.3 高级命令2.4 其他 2. docker常用命令 2.1 参数说明(tomcat案例) 注意如果分成多行,\后面不能有空格 # 拉取运行 docker run \ -d \ -p 8080:8080 \ --privilegedtrue \ --restartalways \ -m…...

Debian11安装MySQL8.0,链接Navicat
图文小白教程 1 下载安装MySQL1.1 从MySQL官网下载安装文件1.2 安装MySQL1.3 登录MySQL 2 配置Navicat远程访问2.1 修改配置2.2 Navicat 连接 end: 卸载 MySQL 记录于2023年9月,Debian11 、 MySQL 8.0.34 1 下载安装MySQL 1.1 从MySQL官网下载安装文件 打开 MySQ…...

vue项目中使用特殊字体的步骤
写在前面 在项目中使用特殊字体,需要注意,所使用的特殊字体是否被允许商用或是个人开发,以及如何使用,切记不要侵权。 首先需要在对应字体网站下载字体文件,取出里面后缀名为.ttf的文件 然后把该文件放到src -> ass…...

激光雷达检测负障碍物(附大概 C++ 代码)
检测效果如图,红色是正负的障碍物点: 障碍物根据其相对于地面的高度可以分为两类:正向障碍物和负向障碍物。在室外环境中,负障碍物是沟渠、悬崖、洞口或具有陡峭负坡度的地形,可能会造成安全隐患。 不慎通过道路坑洼处…...
【每日一题】9.13 PING是怎么工作的?
PING命令的作用是什么? PING命令是计算机网络中常用的命令之一,它的作用是测试两台计算机之间的连通性以及测量数据包往返的时间。 PING命令的工作原理是什么? PING命令的工作原理涉及到ICMP(Internet Control Message Protocol)和网络协议栈的操作: 1.发送ICMP …...
【Python百日进阶-Web开发-Peewee】Day279 - SQLite 扩展(四)
文章目录 12.2.10 class FTSModel 12.2.10 class FTSModel class FTSModel与FTS3 和 FTS4 全文搜索扩展VirtualModel一起使用的子类。 FTSModel 子类应该正常定义,但是有几个注意事项: 不支持唯一约束、非空约束、检查约束和外键。字段索引和多列索引…...

Postman接口压力测试 ---- Tests使用(断言)
所谓断言,主要用于测试返回的数据结果进行匹配判断,匹配成功返回PASS,失败返回FAIL。 下图方法一,直接点击右侧例子函数,会自动生成出现在左侧窗口脚本,只需修改数据即可。 方法二:直接自己写脚…...

nvue文件中@click.stop失效
在nvue文件中在子元素使用click.stop失效,父元素的事件触发了 在uniapp开发中nvue文件是跟vue文件是不一样的,就比如click.stop阻止点击事件继续传播就失效了,这时我们需要在子元素事件中添加条件编译,这样就会解决这个问题 // …...

【微信小程序开发】宠物预约医疗项目实战-开发功能介绍
【微信小程序开发】宠物医院项目实战-开发功能介绍 前言 本项目主要带领大家学习微信小程序开发技术,通过一个完整的项目系统的学习微信小程序的开发过程。鉴于一些同学对视频教学跟不上节奏,为此通过图文描述的方式,完整的将系统开发过程记…...

vue网页缓存页面与不缓存页面处理
在主路由页面 <template><div style"height: 100%"><!-- 缓存 --><keep-alive><router-view v-if"$route.meta.keepAlive"></router-view></keep-alive><!-- 不缓存 --><router-view v-if"!$rou…...

AI系统论文阅读:SmartMoE
提出稀疏架构是为了打破具有密集架构的DNN模型中模型大小和计算成本之间的连贯关系的——最著名的MoE。 MoE模型将传统训练模型中的layer换成了多个expert sub-networks,对每个输入,都有一层special gating network 来将其分配到最适合它的expert中&…...

AD20多层板设计中的平电层设计规则
一般情况下的多层板设计非常复杂,尤其层叠的次序以及平电层的电源层设计,Gnd层的设计比较简单,不需要过多的关注,但是电源层的设计非常关键,常常让人感到无法下手的感觉,这里介绍一个简单的防盲很快的让你上…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...