【C语言】每日一题(半月斩)——day2
目录
一.选择题
1、以下程序段的输出结果是( )
2、若有以下程序,则运行后的输出结果是( )
3、如下函数的 f(1) 的值为( )
4、下面3段程序代码的效果一样吗( )
5、对于下面的说法,正确的是( )
二,编程题
1.尼科彻斯定理
2.等差数列
一.选择题
1、以下程序段的输出结果是( )
int main()
{char s[] = "\\123456\123456\t";printf("%d\n", strlen(s));return 0;
}
A: 12 B:13 C: 16 D: 以上都不对
解析:
考察的是转义字符
\\ 表示字符'\',\123表示字符'{',\t表示制表符;
转义字符通常考察两种:
①\ddd ddd表示1~3个八进制
②\xhh hh表示1~2个十六进制
正确答案:A
2、若有以下程序,则运行后的输出结果是( )
#include <stdio.h>
#define N 2
#define M N + 1
#define NUM (M + 1) * M / 2
int main()
{printf("%d\n", NUM);return 0;
}
A: 4 B: 8 C: 9 D: 6
解析:
考察的是define宏定义
宏只是替换,替换后NUM的样子是(2+1+1)*2+1/2,计算得8 ;
#define是宏定义,只进行替换
正确答案:B
3、如下函数的 f(1) 的值为( )
int f(int n)
{static int i = 1;if (n >= 5)return n;n = n + i;i++;return f(n);
}
A:5 B:6 C:7 D:8
解析:
考察的是函数递归static修饰的局部变量——称为静态局部变量
static实际修改了局部变量的存储类型,将原本应该存储在栈区的局部变量存储在静态区。静态区上数据存储的特点是,程序结束变量才被释放。我们常见的全局变量就是存储在静态区上。现在我们分析static修饰后作用域和生命周期的变化:
【作用域】:作用域不变,只是出作用域不被销毁
【生命周期】:生命周期变长,程序结束生命周期才结束正确答案:C
4、下面3段程序代码的效果一样吗( )
int b;
①const int* a = &b;
②int const* a = &b;
③int* const a = &b;
A: (2)=(3) B: (1)=(2) C: 都不一样 D: 都一样
解析:
考察的是const;
将变量转成常量
但并不是真正的变成常量,只是语法形式变成常量;本质上还是变量,
counst 修饰的变量不能再被改变;
修饰指针有两种方法
counst int* p ;
int * counst p;
- const 放在的左边
限制的指针指向的内容,也就是说: 不能通过指针来修改指针指向的内容
但是指针变量是可以修改的,也就是指针指向其他变量的
- const 放在的右边
限制的是指针变量本身,指针变量不能再指向其他对象
但是可以通过指针变量来修改指向的内容
正确答案:B
5、对于下面的说法,正确的是( )
A: 对于 struct X{short s;int i;char c;},sizeof(X)等于sizeof(s) + sizeof(i) + sizeof(c)
B: 对于某个double变量 a,可以使用 a == 0.0 来判断其是否为零
C: 初始化方式 char a[14] = "Hello, world!"; 和char a[14]; a = "Hello, world!";的效果相同
D: 以上说法都不对
解析:
考察的是结构体和sizeof;
A.没有考虑内存对齐
B.考察浮点型的比较,由于浮点型存在误差,不能直接判断两个数是否相等,通常采用比较两个数差的绝对值是否小于一个很小的数,作为误差
C.第二种的a代表首元素的地址,地址是常量不可以改变
正确答案:D
二,编程题
1.尼科彻斯定理
验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。
例如:
1^3=1
2^3=3+5
3^3=7+9+11
4^3=13+15+17+19
输入一个正整数m(m≤100),将m的立方写成m个连续奇数之和的形式输出。
数据范围:1≤m≤100
尼科彻斯定理——牛客网
#include<math.h>
int main()
{int m = 0;scanf("%d", &m);//获得m的三次幂的数int ret = pow(m, 3);printf("m的立方数:%d\n", ret);//如果m是1if (m == 1){printf("%d", m);}//找到首个元素int num = m * m - m + 1;//进行循环找到后面m个数字for (int i = 0; i < m; i++){//打印首个数字if (i == 0){printf("%d ", num);}//打印后面的else {printf("+ %d ", num);}num += 2;}return 0;
}
通过示例发现,我们只要找到相加数字串的首个数字就可以通过+2的方式找到后面m-1个;
4^3=13+15+17+19;
首数字13是4*4-4+1得到的数字,然后就是通过循环找到后面几个数字;
2.等差数列
等差数列 2,5,8,11,14。。。。
(从 2 开始的 3 为公差的等差数列)
输出求等差数列前n项和
数据范围:1≤n≤1000
输入描述:
输入一个正整数n。
输出描述:
输出一个相加后的整数。
等差数列———牛客网
int main()
{int n = 0;int arr[1000];scanf("%d", &n);//将等差数列存入数组for (int i = 0; i < 1000; i++){arr[i] = 3 * (i + 1) - 1;}//将等差数累加int sum = 0;for (int j = 0; j < n; j++){sum = sum + arr[j]; }printf("%d", sum);return 0;
}
相关文章:

【C语言】每日一题(半月斩)——day2
目录 一.选择题 1、以下程序段的输出结果是( ) 2、若有以下程序,则运行后的输出结果是( ) 3、如下函数的 f(1) 的值为( ) 4、下面3段程序代码的效果一样吗( ) 5、对于下面的说法,正确的是…...
电脑如何查看代理服务器IP?
许多人在使用互联网时可能会遇到需要使用代理服务器的情况。但是,你知道如何在电脑上查看代理服务器IP吗?本文将为您分享简单易懂的方法,帮助您轻松了解代理设置的秘密! 代理服务器在网络世界中担任着重要的角色,它可…...

【C++11】{}初始化、std::initializer_list、decltype、STL新增容器
文章目录 1. C11简介2. 统一的列表初始化2.1 {}初始化2.2 std::initializer_list 3. 声明3.1 auto3.2 decltype 4. nullptr5. 范围for循环6. 智能指针7. C11STL中的一些变化8. 演示代码 1. C11简介 在2003年C标准委员会曾经提交了一份技术勘误表(简称TC1…...

【FPGA项目】进阶版沙盘演练——报文收发(报文处理、CDC、CRC)
前言 书接上文【FPGA项目】沙盘演练——基础版报文收发_子墨祭的博客-CSDN博客,前面我们做了基础版的报文收发,相信对逻辑设计有了一定的认知,在此基础上,继续完善一个实际报文收发可能会遇到的一些处理: 报文处理握手…...
【程序员装机】自定义Edge浏览器用户目录
文章目录 前言修改Edge用户目录的批处理脚本上述批处理脚本的功能包括 总结 前言 本文将介绍Edge浏览器用户目录的批处理脚本方式修改,以自定义Edge浏览器的磁盘缓存目录和用户数据目录。 修改Edge用户目录的批处理脚本 以下是一个用于修改Edge浏览器用户目录的批…...

ubuntu18、20 cv_bridge 与自带opencv版本冲突问题
背景: nvidia tx2、xvaier 装机自带 ubuntu18 opencv4 后来我们会安装melodic的ros,ros中的cv_bridge 默认cv版本是3.2.0 编译带cv_bridge的代码时,会报错会崩溃,因为版本冲突了 为了解决该问题, 行之有效的一种…...

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据...
原文链接:http://tecdat.cn/?p22702 贝叶斯回归分位数在最近的文献中受到广泛关注,本文实现了贝叶斯系数估计和回归分位数(RQ)中的变量选择,带有lasso和自适应lasso惩罚的贝叶斯(点击文末“阅读原文”获取…...

css自学框架之图片懒加载
首先解释一下什么叫图片懒加载。图片懒加载是一种在页面加载时,延迟加载图片资源的技术,也就是说图片资源在需要的时候才会加载,就是在屏幕显示范围内加载图片,屏幕显示范围外图片不加载。 一、关键函数 用到的关键函数…...
RoutingKafkaTemplate,DefaultKafkaProducerFactory和 ReplyingKafkaTemplate
一、RoutingKafkaTemplate 1.1、RoutingKafkaTemplate 能做什么 RoutingKafkaTemplate可以根据目标topic名称在运行时选择生产者。 RoutingKafkaTemplate 不支持事务、execute、flush或metrics操作,因为这些操作的主题未知。 1.2、使用前提 RoutingKafkaTemplate 和 KafkaT…...
Flutter动态化开发之Fair实战
一、背景 目前移动端应用的版本更新, 最常见的方式是定期发版,无论是安卓还是iOS,都需要提交新的安装包到应用市场进行审核。审核通过后,用户在应用市场进行App的下载更新。而动态化, 就是不依赖更新程序安装包, 就能动态实时更新页面的技术。 相比动态化技术,定期发版…...
Stream流编程
流格式 Stream<T> filter(Predicate<? super T> predicate);-----> 参数:public interface Predicate<T> (函数式接口)----> 抽象方法:boolean test(T t);-----> 参数:public interface Consumer<T> (函…...

jenkins自动化脚本集成时钉钉消息未发送
在进行jenkins自动化脚本集成时,需要配置钉钉发送消息。钉钉的配置正确,测试钉钉消息发送成功,但是当构建项目时,却没有收到钉钉消息,报错如下: [钉钉插件]发送消息时报错: java.lang.NullPointerExceptio…...
java面试题第七天
一、java面试题第七天 1.方法重载和重写的区别? 方法重载:在同一个类中,不同的方法拥有同样的方法名,不一样的参数列表,这就叫做方法重载 **方法的重写:**描述的是父类和子类之间的。当父类的功能无法满…...

MATLAB入门-矩阵的运算
MATLAB入门-矩阵的运算 本篇文章为学习笔记,课程链接为:头歌 相关知识 常见的矩阵运算有算术运算、关系运算和逻辑运算。MATLAB中的所有变量都是以矩阵的形式存储的,单个变量就相当于一个1*1的矩阵。 算术运算 下面展示的是常见的矩阵之…...
[X3m]ros交叉编译
ros需要安装以下包 PYTHON_PACKAGE_LIST"lark lark-parser netifaces pyyaml ifcfg pyunicodedata " TogetheROS.Bot | TogetheROS.Bot用户手册 编译tros.b 1 使用docker文件 该部分操作均在开发机的docker内完成。 ## 创建目录 cd /mnt/data/kairui.wang/…...

【漏洞库】Fastjson_1.2.47_rce
文章目录 漏洞描述漏洞编号漏洞评级影响版本漏洞复现- 利用工具- 漏洞环境- 漏洞扫描- 漏洞验证- 深度利用- GetShell- EXP 编写 漏洞挖掘- 寻找入口点- 指纹信息 修复建议- 漏洞修复 漏洞原理 漏洞描述 Fastjson是阿里巴巴公司开源的一款json解析器,其性能优越&am…...

zabbix 钉钉微信企微告警(动作操作消息内容模板)
一、环境配置 1、配置zabbix服务端 2、配置监控主机&监控项&监控模板 zabbix配置安装_this page is used to test the proper operation of _疯飙的蜗牛的博客-CSDN博客 二、触发器 触发器的本质就是一个条件判断,对于不同的监控数据来说,我…...
阿里云国际站云服务器数据备份方法有哪些?
阿里云国际站云服务器是一种根据云计算技术的虚拟服务器,它能够经过互联网提供计算资源和服务。在运用云服务器的过程中,数据备份是非常重要的一个环节。本文将介绍云服务器数据备份的办法,包含手动备份、主动备份和数据同步。 一、手动备份 …...

游戏笔记本电脑可以进行 3D 建模和渲染吗?有哪些优势与缺点?
3D 建模和渲染是创建令人惊叹的数字艺术、动画和游戏体验的最流行和最广泛使用的工具之一。随着技术的进步,对运行这些模型的强大计算机的需求呈指数级增长。对于那些寻求强大机器来处理 3D 建模任务的人来说,游戏笔记本电脑已成为一个可行的选择。 游戏…...

【AI】推理系统和推理引擎的整体架构
本文主要是对 B 站 Up 主 ZOMI酱 推理系统系列视频 的理解,可以认为是重点笔记。 一、深度学习模型的全生命周期 相信很多人和我一样,刚看到深度学习模型中的推理系统或推理引擎时是一头雾水,因为学习 DL 时通常关注于模型的设计和训练。下图…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...