【物联网】简要介绍最小二乘法—C语言实现
最小二乘法是一种常用的数学方法,用于拟合数据和寻找最佳拟合曲线。它的目标是找到一个函数,使其在数据点上的误差平方和最小化。
文章目录
- 基本原理
- 最小二乘法的求解
- 应用举例
- 使用C语言实现最小二乘法
- 总结
基本原理
假设我们有一组数据点 ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) (x_1, y_1), (x_2, y_2), ..., (x_n, y_n) (x1,y1),(x2,y2),...,(xn,yn),我们想要找到一个函数 y = f ( x ) y = f(x) y=f(x),使得这个函数能够最好地拟合这些数据点。最小二乘法的基本思想是,我们要找到一个函数 y = f ( x ) y = f(x) y=f(x),使得所有数据点到这个函数的距离的平方和最小。
我们定义每个数据点到函数的距离为残差 r e s i d u a l i residual_i residuali,即 r e s i d u a l i = y i − f ( x i ) residual_i = y_i - f(x_i) residuali=yi−f(xi)。我们的目标是最小化所有残差的平方和,即最小化误差平方和 S = ∑ i = 1 n r e s i d u a l i 2 S = \sum_{i=1}^{n} residual_i^2 S=∑i=1nresiduali2。
最小二乘法的求解
为了求解最小二乘法问题,我们需要选择一个合适的函数形式 y = f ( x ) y = f(x) y=f(x)。常见的函数形式包括线性函数、多项式函数、指数函数等。以线性函数 y = a x + b y = ax + b y=ax+b为例,我们可以通过最小化误差平方和 S S S来求解系数 a a a和 b b b。
首先,我们定义一个目标函数 J ( a , b ) J(a, b) J(a,b),即 J ( a , b ) = ∑ i = 1 n ( y i − ( a x i + b ) ) 2 J(a, b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2 J(a,b)=∑i=1n(yi−(axi+b))2。我们的目标是找到使得 J ( a , b ) J(a, b) J(a,b)最小的 a a a和 b b b。为了达到这个目标,我们需要求解目标函数的偏导数,并令其为0。
对于目标函数 J ( a , b ) J(a, b) J(a,b),我们分别对 a a a和 b b b求偏导数,并令其为0,即:
∂ J ∂ a = 0 \frac{\partial J}{\partial a} = 0 ∂a∂J=0
∂ J ∂ b = 0 \frac{\partial J}{\partial b} = 0 ∂b∂J=0
通过求解上述方程组,我们可以得到 a a a和 b b b的解,从而得到最佳拟合直线。
应用举例
最小二乘法在实际应用中具有广泛的应用。例如,在经济学中,最小二乘法可以用于估计经济模型的参数。在物理学中,最小二乘法可以用于拟合实验数据并得到物理定律的参数。在机器学习中,最小二乘法可以用于线性回归问题。
下面以线性回归问题为例,假设我们有一组房屋面积和价格的数据点,我们想要找到一个线性函数,使得能够最好地拟合这些数据点。我们可以使用最小二乘法来求解线性函数的参数。
假设我们的数据点为 ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) (x_1, y_1), (x_2, y_2), ..., (x_n, y_n) (x1,y1),(x2,y2),...,(xn,yn),我们要找到一个线性函数 y = a x + b y = ax + b y=ax+b,使得误差平方和 S = ∑ i = 1 n ( y i − ( a x i + b ) ) 2 S = \sum_{i=1}^{n} (y_i - (ax_i + b))^2 S=∑i=1n(yi−(axi+b))2最小化。
通过求解目标函数的偏导数,并令其为0,我们可以得到 a a a和 b b b的解。最终,我们可以得到最佳拟合直线的参数。
使用C语言实现最小二乘法
#include <stdio.h>// 定义最大数据点数量
#define MAX_DATA_POINTS 100// 定义数据点结构体
typedef struct {double x;double y;
} DataPoint;// 定义线性回归函数
void linearRegression(DataPoint* data, int n, double* a, double* b) {double sumX = 0, sumY = 0, sumXY = 0, sumX2 = 0;for (int i = 0; i < n; i++) {sumX += data[i].x;sumY += data[i].y;sumXY += data[i].x * data[i].y;sumX2 += data[i].x * data[i].x;}double denominator = n * sumX2 - sumX * sumX;*a = (n * sumXY - sumX * sumY) / denominator;*b = (sumY * sumX2 - sumX * sumXY) / denominator;
}int main() {int n;DataPoint data[MAX_DATA_POINTS];// 输入数据点数量printf("Enter the number of data points: ");scanf("%d", &n);// 输入数据点的 x 和 y 值printf("Enter the data points (x, y):\n");for (int i = 0; i < n; i++) {printf("Data point %d: ", i+1);scanf("%lf %lf", &data[i].x, &data[i].y);}double a, b;linearRegression(data, n, &a, &b);// 输出线性回归的结果printf("Linear regression equation: y = %.2fx + %.2f\n", a, b);return 0;
}
该代码实现了一个简单的线性回归函数linearRegression,该函数接受一个数据点数组和数据点数量作为输入,并计算出最佳拟合直线的参数。在main函数中,我们首先输入数据点的数量和具体数值,然后调用linearRegression函数进行线性回归计算,并输出最佳拟合直线的方程。
请注意,该代码仅实现了简单的线性回归,如果需要拟合其他类型的函数,需要相应地修改linearRegression函数的实现。
总结
最小二乘法是一种常用的数学方法,用于拟合数据和寻找最佳拟合曲线。它的基本原理是最小化数据点到拟合函数的距离的平方和。通过求解目标函数的偏导数,并令其为0,我们可以得到最佳拟合函数的参数。最小二乘法在各个领域都有广泛的应用,是一种非常有用的工具。
相关文章:
【物联网】简要介绍最小二乘法—C语言实现
最小二乘法是一种常用的数学方法,用于拟合数据和寻找最佳拟合曲线。它的目标是找到一个函数,使其在数据点上的误差平方和最小化。 文章目录 基本原理最小二乘法的求解应用举例使用C语言实现最小二乘法总结 基本原理 假设我们有一组数据点 ( x 1 , y 1 …...
慢查询SQL如何优化
一.什么是慢SQL? 慢SQL指的是Mysql中执行比较慢的SQL,排查慢SQL最常用的方法是通过慢查询日志来查找慢SQL。Mysql的慢查询日志是Mysql提供的一种日志记录,它用来记录Mysql中响应时间超过long_query_time值的sql,long_query_time的默认时间为10s. 二.查看慢SQL是否…...
UART 通信-使用VIO进行板级验证
串口系列知识分享: (1)串口通信实现-串口发送 (2)串口通信发送多字节数据 (3)串口通信实现-串口接收 (4)UART 通信-使用VIO进行板级验证 (5)串口接收-控制LED闪烁 (6)使用串口发送实现ACX720开发板时钟显示 (7)串口发送+RAM+VGA传图 文章目录 前言一、uart串口协…...
linux 查看可支持的shell
查看可支持的shell linux中支持多种shell类型,所以在shell文件的第一行需要指定所使用的shell #!/bin/bash 指定该脚本使用的是/bin/bash,这样的机制使得我们可以轻松地引用任何的解释器 查看该linux系统支持的shell cat /etc/shells/bin/sh/bin/bash/us…...
微服务简介
微服务简介 微服务架构是一种软件架构模式,它将一个大型应用程序拆分为一组小型、独立的服务,每个服务都有自己的业务逻辑和数据存储。这些服务可以独立开发、部署和扩展,通常使用HTTP或其他轻量级通信协议进行通信。 以下是微服务架构的一…...
PHP自己的框架2.0设置常量并绑定容器(重构篇三)
目录 1、设置常量并绑定容器 2、容器增加设置当前容器的实例和绑定一个类实例当容器 3、将常量绑定到容器中 4、运行效果 1、设置常量并绑定容器 2、容器增加设置当前容器的实例和绑定一个类实例当容器 //设置当前容器的实例public static function setInstance($instance){…...
重建大师提交空三后引擎状态是等待,怎么开启?
答:图片中这是在自由网空三阶段,整个AT都是等待中,可以修改任务目录和监控目录看一下,先设置引擎,再提交空三。...
【数据结构】堆的向上调整和向下调整以及相关方法
💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃 文章目录 一、堆的概念二、堆的性质…...
【蓝桥杯选拔赛真题60】Scratch旋转风车 少儿编程scratch图形化编程 蓝桥杯选拔赛真题解析
目录 scratch旋转风车 一、题目要求 编程实现 二、案例分析 1、角色分析...
JavaSE、JavaEE与Spring的概念和异同点剖析以及规范13 个分析
JavaSE、JavaEE与Spring的概念和异同点剖析以及规范13 个分析 目录概述需求: 设计思路实现思路分析1.什么是JavaSE2.是JavaEE3.什么是Spring 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&…...
微信小程序的图书馆图书借阅 座位预约系统 读者端设计与实现
该系统基于B/S即所谓浏览器/服务器模式,应用springboot框架,选择MySQL作为后台数据库。系统主要包括系统图书信息、图书借阅、图书归还、自习室信息、自习室预约等功能模块。 关键词 微信小程序的图书馆读者端;微信小程序;java语…...
在阿里云 linux 服务器上查看当前服务器的Nginx配置信息
我们可以通过命令 sudo nginx -t查看到nginx.conf的路径 可以通过 sudo nginx -T查看 nginx 详细配置信息,包括加载的配置文件和配置块的内容 其中也会包括配置文件的内容...
专业招投标书翻译怎样做比较好
在全球经济贸易一体化不断深入的时代,招投标作为国际通用的新型贸易方式,受到了大量中外企业的青睐。根据国际惯例,与招标采购活动有关的一切文件资料,均须使用英文编制。即使允许使用非英文语言编制,也必须随附一份英…...
算法总结10 线段树
算法总结10 线段树 线段树2569. 更新数组后处理求和查询 线段树 有一个数组,我们要: 更新数组的值(例如:都加上一个数,把子数组内的元素取反)查询一个子数组的值(例如:求和&#x…...
518抽奖软件,支持按人像照片抽奖
518抽奖软件简介 518抽奖软件,518我要发,超好用的年会抽奖软件,简约设计风格。 包含文字号码抽奖、照片抽奖两种模式,支持姓名抽奖、号码抽奖、数字抽奖、照片抽奖。(www.518cj.net) 照片抽奖模式 圆角边框 照片抽奖模式下&am…...
数字IC笔试面试题之--时钟偏斜(skew)与抖动(jitter)
1 时钟偏斜(clock skew) 时钟偏斜(偏移)是因为布线长度和负载不同,导致同一时钟上升沿到不同触发器的时间不同。这一时间差,即为时钟偏移。 时钟偏斜可能导致时序违例(本文直接粘贴了参考博客…...
免费api接口:物流api,企业工商查询api,游戏api。。。
免费api接口,物流api,企业工商查询api,游戏api。。。都有。 Facebook Games Services - Facebook Games Services 为游戏开发者提供了各种服务, 包括(但不限于) 成就 API, 分数 API, 应用通知, 请求, 游戏养成和 Facebook SDK for Unity.Google Play Games Service…...
第二十八章 Classes - 引用其他类的方法
文章目录 第二十八章 Classes - 引用其他类的方法引用其他类的方法对当前实例的引用 第二十八章 Classes - 引用其他类的方法 引用其他类的方法 在方法(或例程)中,使用下面的语法来引用其他类中的方法: 要调用类方法并访问其返回值,请使用如下表达式:…...
Android 中集成 TensorFlow Lite图片识别
在上图通过手机的相机拍摄到的物体识别出具体的名称,这个需要通过TensorFlow 训练的模型引用到项目中;以下就是详细地集成 TensorFlow步骤,请按照以下步骤进行操作: 在项目的根目录下的 build.gradle 文件中添加 TensorFlow 的 Ma…...
NSSCTF之Misc篇刷题记录(16)
NSSCTF之Misc篇刷题记录(16) [黑盾杯 2020]encrypt[UTCTF 2020]Spectre[UTCTF 2020]Observe closely NSSCTF平台:https://www.nssctf.cn/ PS:所有FLAG改为NSSCTF [黑盾杯 2020]encrypt UTAxSlUwTkRWRVo3Um1GclpWOWxibU55ZVhCMGFX…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...
保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!
目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...
Python异步编程:深入理解协程的原理与实践指南
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 持续学习,不断…...
