当前位置: 首页 > news >正文

微博情绪分类

引自:https://blog.csdn.net/no1xiaoqianqian/article/details/130593783

友好借鉴,总体抄袭。

所需要的文件如下:https://download.csdn.net/download/m0_37567738/88340795

import os
import torch
import torch.nn as nn
import numpy as npclass TextRNN(nn.Module):def __init__(self, Config):super(TextRNN, self).__init__()self.hidden_size = 128  # lstm隐藏层self.num_layers = 2  # lstm层数self.embedding = nn.Embedding(Config.n_vocab, Config.embed_dim)self.lstm = nn.LSTM(Config.embed_dim, self.hidden_size, self.num_layers,bidirectional=True, batch_first=True, dropout=Config.dropout)self.fc = nn.Linear(self.hidden_size * 2, Config.num_classes)def forward(self, x):out = self.embedding(x)  # [batch_size, seq_len, embeding]=[128, 32, 300]out, _ = self.lstm(out)out = self.fc(out[:, -1, :])  # 句子最后时刻的 hidden statereturn outimport torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import copyclass Transformer(nn.Module):def __init__(self, Config):super(Transformer, self).__init__()self.hidden = 1024self.last_hidden = 512self.num_head = 5self.num_encoder = 2self.dim_model = 300self.embedding = nn.Embedding(Config.n_vocab, Config.embed_dim)self.postion_embedding = Positional_Encoding(Config.embed_dim, Config.all_seq_len, Config.dropout, Config.device)self.encoder = Encoder(self.dim_model, self.num_head, self.hidden, Config.dropout)self.encoders = nn.ModuleList([copy.deepcopy(self.encoder)# Encoder(config.dim_model, config.num_head, config.hidden, config.dropout)for _ in range(self.num_encoder)])self.fc1 = nn.Linear(Config.all_seq_len * self.dim_model, Config.num_classes)# self.fc2 = nn.Linear(config.last_hidden, config.num_classes)# self.fc1 = nn.Linear(config.dim_model, config.num_classes)def forward(self, x):out = self.embedding(x)out = self.postion_embedding(out)for encoder in self.encoders:out = encoder(out)out = out.view(out.size(0), -1)# out = torch.mean(out, 1)out = self.fc1(out)return outclass Encoder(nn.Module):def __init__(self, dim_model, num_head, hidden, dropout):super(Encoder, self).__init__()self.attention = Multi_Head_Attention(dim_model, num_head, dropout)self.feed_forward = Position_wise_Feed_Forward(dim_model, hidden, dropout)def forward(self, x):out = self.attention(x)out = self.feed_forward(out)return outclass Positional_Encoding(nn.Module):def __init__(self, embed, pad_size, dropout, device):super(Positional_Encoding, self).__init__()self.device = deviceself.pe = torch.tensor([[pos / (10000.0 ** (i // 2 * 2.0 / embed)) for i in range(embed)] for pos in range(pad_size)])self.pe[:, 0::2] = np.sin(self.pe[:, 0::2])self.pe[:, 1::2] = np.cos(self.pe[:, 1::2])self.dropout = nn.Dropout(dropout)def forward(self, x):out = x + nn.Parameter(self.pe, requires_grad=False).to(self.device)out = self.dropout(out)return outclass Scaled_Dot_Product_Attention(nn.Module):'''Scaled Dot-Product Attention '''def __init__(self):super(Scaled_Dot_Product_Attention, self).__init__()def forward(self, Q, K, V, scale=None):'''Args:Q: [batch_size, len_Q, dim_Q]K: [batch_size, len_K, dim_K]V: [batch_size, len_V, dim_V]scale: 缩放因子 论文为根号dim_KReturn:self-attention后的张量,以及attention张量'''attention = torch.matmul(Q, K.permute(0, 2, 1))if scale:attention = attention * scale# if mask:  # TODO change this#     attention = attention.masked_fill_(mask == 0, -1e9)attention = F.softmax(attention, dim=-1)context = torch.matmul(attention, V)return contextclass Multi_Head_Attention(nn.Module):def __init__(self, dim_model, num_head, dropout=0.0):super(Multi_Head_Attention, self).__init__()self.num_head = num_headassert dim_model % num_head == 0self.dim_head = dim_model // self.num_headself.fc_Q = nn.Linear(dim_model, num_head * self.dim_head)self.fc_K = nn.Linear(dim_model, num_head * self.dim_head)self.fc_V = nn.Linear(dim_model, num_head * self.dim_head)self.attention = Scaled_Dot_Product_Attention()self.fc = nn.Linear(num_head * self.dim_head, dim_model)self.dropout = nn.Dropout(dropout)self.layer_norm = nn.LayerNorm(dim_model)def forward(self, x):batch_size = x.size(0)Q = self.fc_Q(x)K = self.fc_K(x)V = self.fc_V(x)Q = Q.view(batch_size * self.num_head, -1, self.dim_head)K = K.view(batch_size * self.num_head, -1, self.dim_head)V = V.view(batch_size * self.num_head, -1, self.dim_head)# if mask:  # TODO#     mask = mask.repeat(self.num_head, 1, 1)  # TODO change thisscale = K.size(-1) ** -0.5  # 缩放因子context = self.attention(Q, K, V, scale)context = context.view(batch_size, -1, self.dim_head * self.num_head)out = self.fc(context)out = self.dropout(out)out = out + x  # 残差连接out = self.layer_norm(out)return outclass Position_wise_Feed_Forward(nn.Module):def __init__(self, dim_model, hidden, dropout=0.0):super(Position_wise_Feed_Forward, self).__init__()self.fc1 = nn.Linear(dim_model, hidden)self.fc2 = nn.Linear(hidden, dim_model)self.dropout = nn.Dropout(dropout)self.layer_norm = nn.LayerNorm(dim_model)def forward(self, x):out = self.fc1(x)out = F.relu(out)out = self.fc2(out)out = self.dropout(out)out = out + x  # 残差连接out = self.layer_norm(out)return outimport torch.nn as nn
import torch
import torch.nn.functional as Fclass TextCNN(nn.Module):def __init__(self, Config):super(TextCNN, self).__init__()self.filter_sizes = (2, 3, 4)  # 卷积核尺寸self.num_filters = 64  # 卷积核数量(channels数)self.embedding = nn.Embedding(Config.n_vocab, Config.embed_dim)self.convs = nn.ModuleList([nn.Conv2d(1, self.num_filters, (k, Config.embed_dim)) for k in self.filter_sizes])self.dropout = nn.Dropout(Config.dropout)self.fc = nn.Linear(self.num_filters * len(self.filter_sizes), Config.num_classes)def conv_and_pool(self, x, conv):x = F.relu(conv(x))x = x.squeeze(3)x = F.max_pool1d(x, x.size(2)).squeeze(2)return xdef forward(self, x):out = self.embedding(x)out = out.unsqueeze(1)out = torch.cat([self.conv_and_pool(out, conv) for conv in self.convs], 1)out = self.dropout(out)out = self.fc(out)return outimport matplotlib.pyplot as plt
import numpy as npdef draw_loss_pic(train_loss, test_loss, y):x = np.linspace(0, len(train_loss), len(train_loss))plt.plot(x, train_loss, label="train_" + y, linewidth=1.5)plt.plot(x, test_loss, label="test_" + y, linewidth=1.5)plt.xlabel("epoch")plt.ylabel(y)plt.legend()plt.show()import torchclass Config():train_data_path = '../data/virus_train.txt'test_data_path = '../data/virus_eval_labeled.txt'vocab_path = '../data/vocab.pkl'split_word_all_path = '../data/split_word_all.txt'model_file_name_path = '../data/vec_model.txt'id_vec_path = '../data/id_vec.pkl'device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')word_level = True   # 按照字级别进行分词embedding_pretrained = False   # 是否使用预训练的词向量label_fields = {'neural': 0, 'happy': 1, 'angry': 2, 'sad': 3, 'fear': 4, 'surprise': 5}all_seq_len = 64  # 句子长度,长剪短补batch_size = 128learning_rate = 0.0001epoches = 50dropout = 0.5num_classes = 6embed_dim = 300n_vocab = 0import re
import os
import json
#import jieba
import pickle as pkl
import numpy as np
import gensim.models.word2vec as w2v
import torch
#from src.Config import Config
import torch.utils.data as Datatrain_data_path = Config.train_data_path
test_data_path = Config.test_data_path
vocab_path = Config.vocab_pathlabel_fields = Config.label_fields
all_seq_len = Config.all_seq_lenUNK, PAD = '<UNK>', '<PAD>'  # 未知字,padding符号def build_vocab(content_list, tokenizer):file_split_word = open(Config.split_word_all_path, 'w', encoding='utf-8')vocab_dic = {}for content in content_list:word_lines = []for word in tokenizer(content):vocab_dic[word] = vocab_dic.get(word, 0) + 1word_lines.append(word)str = " ".join(word_lines) + "\n"file_split_word.write(str)file_split_word.close()vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})vocab_dic = {word_count: idx for idx, word_count in enumerate(vocab_dic)}return vocab_dicdef build_id_vec(vocab_dic, model):model.wv.add_vector(UNK, np.zeros(300))model.wv.add_vector(PAD, np.ones(300))id2vec = {}for word in vocab_dic.keys():id = vocab_dic.get(word, vocab_dic.get(UNK))vec = model.wv.get_vector(word)id2vec.update({id: vec})return id2vecdef train_vec():model_file_name = Config.model_file_name_pathsentences = w2v.LineSentence(Config.split_word_all_path)model = w2v.Word2Vec(sentences, vector_size=300, window=20, min_count=0)model.save(model_file_name)def load_data(root):content_list = []content_token_list = []label_list = []if Config.word_level:tokenizer = lambda x: [y for y in x]else:tokenizer = lambda x: jieba.cut(x, cut_all=False)file = open(root, 'r', encoding='utf-8')datas = json.load(file)# pattern = re.compile(r'[^\u4e00-\u9fa5|,|。|!|?|\[|\]]')pattern = re.compile(r'[^\u4e00-\u9fa5|,|。|!|?]')# pattern = re.compile(r'[^\u4e00-\u9fa5|,|。]')       # seq_len=32 CNN:67%-68%  RNN:61%-62%  Transformer:63-64%# pattern = re.compile(r'[^\u4e00-\u9fa5|,|。|!]')       # CNN:65%-66%for data in datas:content_after_clean = re.sub(pattern, '', data['content'])content_list.append(content_after_clean)label_list.append(label_fields[data['label']])if os.path.exists(vocab_path):vocab = pkl.load(open(vocab_path, 'rb'))else:vocab = build_vocab(content_list, tokenizer)pkl.dump(vocab, open(vocab_path, 'wb'))if Config.embedding_pretrained:train_vec()model = w2v.Word2Vec.load(Config.model_file_name_path)id_vec = build_id_vec(vocab, model)pkl.dump(id_vec, open(Config.id_vec_path, 'wb'))for content in content_list:word_line = []token = list(tokenizer(content))seq_len = len(token)if seq_len < all_seq_len:token.extend([PAD] * (all_seq_len - seq_len))else:token = token[:all_seq_len]for word in token:word_line.append(vocab.get(word, vocab.get(UNK)))content_token_list.append(word_line)n_vocab = len(vocab)return content_token_list, label_list, n_vocabclass WeiBboDataset(Data.Dataset):def __init__(self, content_token_list, label_list):super(WeiBboDataset, self).__init__()self.content_token_list = content_token_listself.label_list = label_listdef __getitem__(self, index):label = float(self.label_list[index])return torch.tensor(self.content_token_list[index]), torch.tensor(label)def __len__(self):return len(self.label_list)def get_data(batch_size):train_content_token_list, train_label_list, n_vocab = load_data(train_data_path)test_content_token_list, test_label_list, _ = load_data(test_data_path)train_dataset = WeiBboDataset(train_content_token_list, train_label_list)test_dataset = WeiBboDataset(test_content_token_list, test_label_list)train_dataloader = Data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)test_dataloader = Data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)return train_dataloader, test_dataloader, n_vocabif __name__ == '__main__':get_data(32)import os
import torch
import torch.nn as nn
from torch.autograd import Variable
#from utils.draw_loss_pic import draw_loss_picos.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"def train(net, loss, optimizer, train_loader, test_loader, epoches, device):train_loss = []train_acc = []test_loss = []test_acc = []for epoch in range(epoches):net.train()total_loss = 0.0correct = 0sample_num = 0for batch_idx, (data, target) in enumerate(train_loader):data = data.to(device).long()target = target.to(device).long()optimizer.zero_grad()output = net(data)ls = loss(output, target)ls.backward()optimizer.step()total_loss += ls.item()sample_num += len(target)max_output = output.data.max(1, keepdim=True)[1].view_as(target)correct += (max_output == target).sum()print('epoch %d, train_loss %f, train_acc: %f' % (epoch + 1, total_loss/sample_num, float(correct.data.item()) / sample_num))train_loss.append(total_loss/sample_num)train_acc.append(float(correct.data.item()) / sample_num)test_ls, test_accury = test(net, test_loader, device, loss)test_loss.append(test_ls)test_acc.append(test_accury)draw_loss_pic(train_loss, test_loss, "loss")draw_loss_pic(train_acc, test_acc, "acc")def test(net, test_loader, device, loss):net.eval()total_loss = 0.0correct = 0sample_num = 0for batch_idx, (data, target) in enumerate(test_loader):data = data.to(device)target = target.to(device).long()output = net(data)ls = loss(output, target)total_loss += ls.item()sample_num += len(target)max_output = output.data.max(1, keepdim=True)[1].view_as(target)correct += (max_output == target).sum()print('test_loss %f, test_acc: %f' % (total_loss / sample_num, float(correct.data.item()) / sample_num))return total_loss / sample_num, float(correct.data.item()) / sample_numimport torch
import torch.nn as nn
import torch.optim as optim
import pickle as pkl
#from src.models.textCNN import TextCNN
#from src.models.textRNN import TextRNN
#from src.models.Transformer import Transformer
#from src.Config import Config
#from src.get_data import get_data
#from src.train import trainif __name__ == '__main__':config = Config()batch_size = config.batch_sizelearning_rate = config.learning_ratetrain_dataloader, test_dataloader, n_vocab = get_data(batch_size)config.n_vocab = n_vocab# model = TextCNN(config).to(Config.device)model = TextRNN(config).to(Config.device)# model = Transformer(config).to(Config.device)# 导入word2vec训练出来的预训练词向量id_vec = open(Config.id_vec_path, 'rb')id_vec = pkl.load(id_vec)id_vec = torch.tensor(list(id_vec.values())).to(Config.device)if config.embedding_pretrained:model.embedding = nn.Embedding.from_pretrained(id_vec)loss = nn.CrossEntropyLoss().to(Config.device)optimizer = optim.Adam(params=model.parameters(), lr=learning_rate)train(model, loss, optimizer, train_dataloader, test_dataloader, Config.epoches, Config.device)

运行结果(准确率和错误率):

正确率达到85%。
在这里插入图片描述

在这里插入图片描述

相关文章:

微博情绪分类

引自&#xff1a;https://blog.csdn.net/no1xiaoqianqian/article/details/130593783 友好借鉴&#xff0c;总体抄袭。 所需要的文件如下&#xff1a;https://download.csdn.net/download/m0_37567738/88340795 import os import torch import torch.nn as nn import numpy a…...

探索项目追踪平台的多样性及功能特点

项目追踪平台是现代项目管理中不可或缺的工具&#xff0c;它可以帮助团队高效地跟踪和管理项目进度、任务和资源分配。在当今快节奏的商业环境中&#xff0c;有许多热门的项目追踪平台可供选择。 本文总结了当下热门的项目追踪平台&#xff0c;供您参考~ 1、Zoho Projects&am…...

git简单命令

简易的命令行入门教程: Git 全局设置: git config --global user.name “yyyyjinying” git config --global user.email “12343343qq.com” 创建 git 仓库: mkdir wx-project cd wx-project git init touch README.md git add README.md git commit -m “first commit” …...

Fiber 架构的起源和含义

Fiber 架构的起源 Fiber 架构的起源可以追溯到 React 团队在 2017 年提出的一项重大改进计划。在过去的 React 版本中&#xff0c;渲染过程是基于递归的&#xff0c;即组件树的遍历是通过递归函数来完成的。这种方式在大规模复杂应用中可能会引发一些性能问题&#xff0c;例如…...

Vue3高频面试题+八股文

Vue3.0中的Composition Api 开始之前 Compos:1 tion API可以说是ue3的最大特点&#xff0c;那么为什么要推出Compos1t1on Api,解决了什么问趣&#xff1f; 通常使用Vue2开发的项目&#xff0c;普遍会存在以下问题&#xff1a; 代码的可读性随着组件变大而变差每一种代码复用的…...

对数据库三大范式的理解

首先&#xff0c;要明确一个概念&#xff0c;范式的提出到逐步精进&#xff0c;从第一范式到第三范式&#xff0c;甚至于BCNF范式&#xff0c;逐步优化是为了解决插入异常、删除异常以及改善数据冗余的。 第一范式&#xff1a;符合第一范式的要求&#xff0c;即数据表的属性值均…...

(matplotlib)如何不显示x轴或y轴刻度(ticks)

文章目录 背景plt版本ax子图版本 解决办法plt版本ax子图版本 背景 import numpy as np import matplotlib.pyplot as pltplt版本 x[1,2,3] y[4,5,6] plt.plot(x,y)ax子图版本 x[1,2,3] y[4,5,6] axplt.subplot() ax.plot(x,y)可以发现&#xff0c;正常情况下是有刻度的&…...

U8用友ERP本地部署异地远程访问:内网端口映射外网方案

文章目录 前言1. 服务器本机安装U8并调试设置2. 用友U8借助cpolar实现企业远程办公2.1 在被控端电脑上&#xff0c;点击开始菜单栏&#xff0c;打开设置——系统2.2 找到远程桌面2.3 启用远程桌面 3. 安装cpolar内网穿透3.1 注册cpolar账号3.2 下载cpolar客户端 4. 获取远程桌面…...

怎么提取一个python文件中所有得函数名称

可以通过创建一个Python脚本来读取一个文件&#xff08;其中包含函数名称&#xff09;&#xff0c;并将这些函数名称写入另一个文件。以下是一个简单的示例&#xff1a; 假设你有一个名为 mytest.py 的文件&#xff0c;其中包含一些函数&#xff1a; # mytest.py def functi…...

企业架构LNMP学习笔记37

1、能够理解读写分离的目的&#xff1b; 2、能够描述读写分离的常见实现方式&#xff1b; 3、能够通过项目框架配置文件实现读写分离&#xff1b; 4、能够通过中间件实现读写分离&#xff1b; 业务背景描述&#xff1a; 时间&#xff1a;2014.6.-2015.9 发布产品类型&#x…...

vue3 自定义组件 v-model 原理解析

1. input 中的 v-model <!-- my-input.vue --> <!-- props&#xff1a;value值必须用modelValue命名 --> <!-- emits&#xff1a;方法必须用update:modelValue命名 --> <script setup>const props defineProps({modelValue: String,});let emits de…...

【Linux从入门到精通】线程 | 线程介绍线程控制

本篇文章主要对线程的概念和线程的控制进行了讲解。其中我们再次对进程概念理解。同时对比了进程和线程的区别。希望本篇文章会对你有所帮助。 文章目录 一、线程概念 1、1 什么是线程 1、2 再次理解进程概念 1、3 轻量级进程 二、进程控制 2、1 创建线程 pthread_create 2、2…...

2023Web前端面试题及答案(一)

答案仅供参考&#xff0c;每人的理解不一样。 文章目录 1、简单说一说事件流原理 事件流: &#xff08;1&#xff09;事件流是指页面 接收事件的顺序; &#xff08;2&#xff09;假设页面中的元素都具备相同的事件,并且这些个元素之间是相互嵌套的 关系. &#xff08;3&#xf…...

Rabbitmq参数优化

官网 ## https://www.rabbitmq.com/configure.html参考 ## https://blog.csdn.net/qq_37165235/article/details/132447907 优化参数 cat /etc/rabbitmq/rabbitmq.conf vm_memory_high_watermark.relative0.8...

typescript环境搭建,及tsc命令优化

typescript typescript. 是一种由微软开发的 开源 、跨平台的编程语言。. 它是 JavaScript 的超集&#xff0c;最终会被编译为JavaScript代码。. TypeScript添加了可选的静态类型系统、很多尚未正式发布的ECMAScript新特性&#xff08;如装饰器 [1] &#xff09;。. 2012年10月…...

suning苏宁API接入说明(苏宁商品详情+关键词搜索商品列表)

API地址:https://o0b.cn/anzexi 调用示例&#xff1a;https://api-gw.onebound.cn/suning/item_get/?keytest_api_key& &num_iid0070134261/703410301&&langzh-CN&secret 参数说明 通用参数说明 version:API版本key:调用key,测试key:test_api_keyapi_na…...

类和对象(3)

文章目录 1.回顾上节2. 拷贝构造3. 运算符重载&#xff08;非常重要&#xff09;4. 赋值运算符重载 1.回顾上节 默认成员函数&#xff1a;我们不写&#xff0c;编译器自动生成。我们不写&#xff0c;编译器不会自动生成 默认生成构造和析构&#xff1a; 对于内置类型不做处理对…...

C++下基于粒子群算法解决TSP问题

粒子群优化算法求解TSP旅行商问题C&#xff08;2020.11.12&#xff09;_jing_zhong的博客-CSDN博客 混合粒子群算法&#xff08;PSO&#xff09;&#xff1a;C实现TSP问题 - 知乎 (zhihu.com) 一、原理 又是一个猜答案的算法&#xff0c;和遗传算法比较像&#xff0c;也是设…...

vue3 ElementUI Switch before-change自动调用问题

使用 :beforeChange 这个属性 但是这个属性不能直接传值 如果直接传值依然会自动调用,需要使用自执行函数来****传值 解决 <el-switchv-model"rows[index].ifInjection":before-change"() > beforeChange(row)"/> :before-change"() > b…...

【chromium】windows 获取源码到本地

从github的chromium 镜像git clone 到2.5G失败了官方说不能,要去 windows_build_instructions vs2017和19都是32位的 vs2022是x64的 vs2022_install You may also have to set variable vs2022_install to your installation path of Visual Studio 2022,...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...