Attention is all you need 论文笔记
该论文引入Transformer,主要核心是自注意力机制,自注意力(Self-Attention)机制是一种可以考虑输入序列中所有位置信息的机制。
RNN介绍
引入RNN为了更好的处理序列信息,比如我 吃 苹果,前后的输入之间是有联系的。
如图:
引入Transformer的原因
- 解决长距离依赖的问题:传统的RNN存在梯度消失和梯度爆炸的问题,难以有效捕获长距离依赖关系。而Transformer引入了注意力机制,使模型可以在序列中捕获远距离依赖关系。
- 并行计算:RNN和循环连接的特点使得它们难以并行计算,限制了计算速度。相比之下,Transformer模型的注意力机制允许模型在每个时间步骤上并行计算,大大加速计算速度。
- 可扩展性:Transformer模型可以适用与不同长度的序列
Attention函数分析
注意力机函数值注意力机制的核心组成部分,它定义了如何计算注意力权重,以及使用这些权重聚合数据来获取上下文表示。注意力函数包括:
- Query:查询用于确定关注哪些输入元素的向量或表示。在自注意力机制中,通常是前一个时间步骤的隐藏状态或者上下文表示。
- key:键是与输入元素相关的向量表示。注意力机制通过比较query和key的相似性来决定要关注哪些输入
- value:值是与键对应的输入元素的向量或表示。注意力机制根据query和key的相似性来为每个值分配权重,这些权重将用于生成上下文表示。
- score:分数表示key和query的相似性,分数越高表示查询更关注与键相关的输入。例如向量a和向量b,它的点积
,
越小,
越大,两个向量之间 相似性越高。
- 注意力权重:是一个概率分布,表示对每个输入元素的关注程度。通常由softmax得到,确保总和为1.
- 上下文表示:通过注意力权重对值进行加权求和得到,它是对输入元素的聚合表示,反应了模型的关注点。
注意力函数的一般计算步骤
- 计算query和key的相似性分数,通过点积、加性模型或者缩放点积等方式实现。
- 对相似性分数进行softmax操作,以此获得注意力权重,确保他们归一化为概率分布。
- 使用注意力权重对值加权求和,以此生成上下文表示。
对于自注意力机制来说
- query、key、value:自注意力的核心是通过三个线性变换来为每个位置生成这三个向量。这些向量在输入序列中的每个位置都有一个。对于给定的位置,query 用于提出问题,key 用于提供答案的位置信息,而value 包含了实际的信息。
- 计算注意力分数:计算分数通过将query和所有位置的key 进行点积操作得到的。注意力分户可以看成是度量两个位置之间关联性的分数,他表示了一个位置对于其他位置的关注程度。
- softmax 操作进行归一化:为了获得有效的注意力权重,对计算得到的注意力分数进行归一化处理。为了确保每个位置权重是有效的概率分布,从而更好的表达位置之间的关联性。
- 计算加权和:对得到的归一化之后的注意力权重和对应位置的value进行加权求和,得到每个位置的上下文表示。
多头注意力机制
是一种扩展的自注意力机制,它允许模型同时学习多个不同的关注模式。多头注意力机制将自注意力计算分为多个头,每个头学习不同的权重矩阵,以捕获不同类型的关联性。多个头的结果会拼接或合并,然后通过线性变换进行投影。
选择缩放点积原因
- 点积和加性注意力理论复杂度相似,但是在实践中点积注意力的速度更快、更节省空间,因为它可以使用高度优化的矩阵乘法代码来实现
- 对于键K的维度
越大,加性注意力的性能比点击好,所以我们怀疑对于很大的维度,点积会大幅度增长,为了抵消这种影响,我们使用缩小点积。
缩放点积
是注意力机制中一种常见的类型,通过和自注意力机制一起使用,它的目的是确保在计算注意力分数的时候,使得范围适中,避免梯度消失或者梯度爆炸。下面是介绍缩放点积的步骤:
- Query、Key、Value:这是缩放点积的三个输入,通常来自于一个序列。
- 相似性分数计算:计算查询和键之间的相似性。将查询和键之间的点积作为相似性分数。具体而言就是,对于给定的查询Q和键K,计算相似性分数矩阵为:
其中K^T表示键K的转置矩阵。每个Scores[i][j]表示查询的第i个元素和键的第j个元素的相似性。Score = Q*K^T
- 缩放:为了稳定训练过程,缩放点积对相似性分数进行缩放操作,通过操作是除以一个缩放因子来实现。缩放因子通常是键K的维度
的平方根。即:
.缩放后的相似性分数Scale_Scores有助于控制梯度大小,防止梯度爆炸或者消失。
Scale_Scores = Scores / sqrt(d_k)
- 计算注意力权重:对缩放后的相似性分数进行softmax操作,将其转化为概率分布,得到注意力权重。这些权重表示了对输入序列不同位置的关注程度。
attention_weight = softmax(Scale_Scores)
结论
在这项工作中,提出了 Transformer,这是一个完全基于注意力的序列转换模型。注意,用多头自注意力取代了编码器-解码器架构中最常用的递归层。
相关文章:
Attention is all you need 论文笔记
该论文引入Transformer,主要核心是自注意力机制,自注意力(Self-Attention)机制是一种可以考虑输入序列中所有位置信息的机制。 RNN介绍 引入RNN为了更好的处理序列信息,比如我 吃 苹果,前后的输入之间是有…...

Hdoop伪分布式集群搭建
文章目录 Hadoop安装部署前言1.环境2.步骤3.效果图 具体步骤(一)前期准备(1)ping外网(2)配置主机名(3)配置时钟同步(4)关闭防火墙 (二)…...
java临时文件
临时文件 有时候,我们程序运行时需要产生中间文件,但是这些文件只是临时用途,并不做长久保存。 我们可以使用临时文件,不需要长久保存。 public static File createTempFile(String prefix, String suffix)prefix 前缀 suffix …...
C++中的<string>头文件 和 <cstring>头文件简介
C中的<string>头文件 和 <cstring>头文件简介 在C中<string> 和 <cstring> 是两个不同的头文件。 <string> 是C标准库中的头文件,定义了一个名为std::string的类,提供了对字符串的操作如size()、length()、empty() 及字…...
安装MySQL
Centos7下安装MySQL详细步骤_centos7安装mysql教程_欢欢李的博客-CSDN博客...

输入学生成绩,函数返回最大元素的数组下标,求最高分学生成绩(输入负数表示输入结束)
scanfscore()函数用于输入学生的成绩 int scanfscore(int score[N])//输入学生的成绩 {int i -1;do {i;printf("输入学生成绩:");scanf("%d", &score[i]);} while (score[i] > 0);return i; } findmax()用于寻找最大值 int findmax(int score[N…...
常用音频接口:TDM,PDM,I2S,PCM
常用音频接口:TDM,PDM,I2S,PCM_tdm音频_沙漠的甲壳虫的博客-CSDN博客 I2S/PCM接口及音频codec_音频pcm接口模块设计-CSDN博客 2个TDM8功放调试ing_周龙(AI湖湘学派)的博客-CSDN博客 数字音频接口时序----IIS、TDM、PCM、PDM_td…...

git clone报错Failed to connect to github.com port 443 after 21055 ms:
git 设置代理端口号 git config --global http.proxy http://127.0.0.1:10085 和 git config --global https.proxy http://127.0.0.1:10085 然后就可以成功git clone hugging face的数据集了 如果是https://huggingface.co/datasets/shibing624/medical/tree/main 那么…...

【操作系统】深入浅出死锁问题
死锁的概念 在多线程编程中,我们为了防止多线程竞争共享资源而导致数据错乱,都会在操作共享资源而导致数据错乱,都会在操作共享资源之前加上互斥锁,只有成功获得到锁的线程,才能操作共享资源,获取不到锁的…...
springboot实现webSocket服务端和客户端demo
1:pom导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId><version>2.2.7.RELEASE</version></dependency>2:myWebSocketClien…...
代码走读: FFMPEG-ffplayer02
AVFrame int attribute_align_arg avcodec_receive_frame(AVCodecContext *avctx, AVFrame *frame) 选取一个音频解码器 和 一个视频解码器分别介绍该解码器功能 音频G722 g722dec.c -> g722_decode_frame 通过 ff_get_buffer 给 传入的 frame 指针分配内存 g722_decode_…...

【数据结构】——排序算法的相关习题
目录 一、选择题题型一 (插入排序)1、直接插入排序2、折半插入排序3、希尔排序 题型二(交换排序)1、冒泡排序2、快速排序 题型三(选择排序)1、简单选择排序~2、堆排序 ~题型四(归并排序…...

C高级day5(Makefile)
一、Xmind整理: 二、上课笔记整理: 1.#----->把带参宏的参数替换成字符串 #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX(a,b) a>b?a:b #define STR(n) #n int main(int argc, const char *argv…...

Android 系统中适配OAID获取
一、OAID概念 OAID(Open Anonymous Identification)是一种匿名身份识别标识符, 用于在移动设备上进行广告追踪和个性化广告投放。它是由中国移动通信集 团、中国电信集团和中国联通集团共同推出的一项行业标准 OAID值为一个64位的数字 二、…...
差分数组leetcode 2770 数组的最大美丽值
什么是差分数组 差分数组是一种数据结构,它存储的是一个数组每个相邻元素的差值。换句话说,给定一个数组arr[],其对应的差分数组diff[]将满足: diff[i] arr[i1] - arr[i] 对于所有 0 < i < n-1 差分数组的作用 用于高效…...
请求响应状态码
请求与响应&状态码 Requests部分 请求行、消息报头、请求正文。 Header解释示例Accept指定客户端能够接收的内容类型Accept: text/plain, text/htmlAccept-Chars et浏览器可以接受的字符编码集。Accept-Charset: iso-8859-5Accept-Encodi ng指定浏览器可以支持的web服务…...

安卓机型系统美化 Color.xml文件必备常识 自定义颜色资源
color.xml文件是Android工程中用来进行颜色资源管理的文件.可以在color.xml文件中通过<color>标签来定义颜色资源.我们在布局文件中、代码中、style定义中或者其他资源文件中,都可以引用之前在color.xml文件中定义的颜色资源。 将color.xml文件拷到res/value…...

YOLO物体检测-系列教程1:YOLOV1整体解读(预选框/置信度/分类任/回归任务/损失函数/公式解析/置信度/非极大值抑制)
🎈🎈🎈YOLO 系列教程 总目录 YOLOV1整体解读 YOLOV2整体解读 YOLOV1提出论文:You Only Look Once: Unified, Real-Time Object Detection 1、物体检测经典方法 two-stage(两阶段):Faster-rc…...

2023/9/12 -- C++/QT
作业 实现一个图形类(Shape),包含受保护成员属性:周长、面积, 公共成员函数:特殊成员函数书写 定义一个圆形类(Circle),继承自图形类,包含私有属性…...

【Purple Pi OH RK3566鸿蒙开发板】OpenHarmony音频播放应用,真实体验感爆棚!
本文转载于Purple Pi OH开发爱好者,作者ITMING 。 原文链接:https://bbs.elecfans.com/jishu_2376383_1_1.html 01注意事项 DevEco Studio 4.0 Beta2(Build Version: 4.0.0.400) OpenHarmony SDK API 9 创建工程类型选择Appli…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...

给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...