当前位置: 首页 > news >正文

3.2 Android eBPF程序类型

写在前面

为什么要先了解eBPF程序类型?

从帮助函数中,我们可能基于内核的eBPF开放API,对eBPF的能力有一个比较细致的认识,但是这并不能让我们从全局,或者更概括的认识eBPF。eBPF程序类型能够更宏观的告诉我们,eBPF能做哪些事情(除网络相关)。

一,eBPF程序类型

内核中不同事件会触发不同类型的eBPF程序,那么eBPF程序类型决定了它可以监控哪些内核事件类型。

1.1 内核支持的ebpf程序类型

/bionic/libc/kernel/uapi/linux/bpf.h

enum bpf_prog_type {BPF_PROG_TYPE_UNSPEC,//未定义或无效的程序类型BPF_PROG_TYPE_SOCKET_FILTER,//该类型的eBPF程序可用于输入输出网络包的过滤BPF_PROG_TYPE_KPROBE,//该类型的eBPF程序可以通过kprobe机制,动态注入到内核函数当中。eBPF程序类型中没有设置uprobe是因为uprobes和kprobes原理相同,kprobe类型的eBPF程序也可以使用uprobes。BPF_PROG_TYPE_SCHED_CLS,//用于网络流量控制分类器。BPF_PROG_TYPE_SCHED_ACT,//用于网络流量控制执行器。BPF_PROG_TYPE_TRACEPOINT,//用作决定某个tracepoint是否应该触发。内核采用插桩的方法抓取log。插桩就是tracepoint。他是Linux内核预先定义的静态探测点。它分布于内核的哥哥子系统当中。每个tracepoint都有一个name,一个enable开关,一系列桩函数,注册桩函数的函数。桩函数类似于printk,不过桩函数并不会把信息打印到console,而是输出到内核的ringbuffer&#x

相关文章:

3.2 Android eBPF程序类型

写在前面 为什么要先了解eBPF程序类型? 从帮助函数中,我们可能基于内核的eBPF开放API,对eBPF的能力有一个比较细致的认识,但是这并不能让我们从全局,或者更概括的认识eBPF。eBPF程序类型能够更宏观的告诉我们,eBPF能做哪些事情(除网络相关)。 一,eBPF程序类型 内核…...

多目标优化算法:基于非支配排序的小龙虾优化算法(NSCOA)MATLAB

一、小龙虾优化算法COA 小龙虾优化算法(Crayfsh optimization algorithm,COA)由Jia Heming 等人于2023年提出,该算法模拟小龙虾的避暑、竞争和觅食行为,具有搜索速度快,搜索能力强,能够有效平衡…...

Linux学习第13天:嵌入式LinuxLED驱动开发:一字一符总见情

在正式写这篇笔记前,有一个事情必须要说一下。昨天更新的基于API函数的字符设备驱动开发按照正常的教程来说应该在本笔记后一天更新才对。但是由于我一时的疏忽,跳过了本笔记。在昨天学习基于API函数的时候造成了一定程度的困扰。今天重翻教程的时候才发…...

ModuleNotFoundError: No module named ‘omni‘

install isaac sim on linux open the isaac sim folder in /home//.local/share/ov/pkg/isaac_sim-2022.1.1 source setup_python_env.sh ./python.sh standalone_examples/replicator/offline_generation.pyNo module named ‘omni.isaac’...

题解:ABC320B - Longest Palindrome

题解:ABC320B - Longest Palindrome 题目 链接:Atcoder。 链接:洛谷。 难度 算法难度:C。 思维难度:C。 调码难度:C。 综合评价:入门。 算法 字符串处理。 思路 通过双层循环分别枚…...

大模型从入门到应用——LangChain:代理(Agents)-[代理执行器(Agent Executor):结合使用Agent和VectorStore]

分类目录:《大模型从入门到应用》总目录 代理执行器接受一个代理和工具,并使用代理来决定调用哪些工具以及以何种顺序调用。本文将参数如何结合使用Agent和VectorStore。这种用法是将数据加载到VectorStore中,并希望以Agent的方式与之进行交互…...

【算法题】100040. 让所有学生保持开心的分组方法数

题目: 给你一个下标从 0 开始、长度为 n 的整数数组 nums ,其中 n 是班级中学生的总数。班主任希望能够在让所有学生保持开心的情况下选出一组学生: 如果能够满足下述两个条件之一,则认为第 i 位学生将会保持开心: …...

TrOCR – 基于 Transformer 的 OCR 入门

一、TrOCR 架构 近些年,光学字符识别 (OCR) 出现了多项创新。它对零售、医疗保健、银行和许多其他行业的影响是巨大的。与深度学习的许多其他领域一样,OCR领域也看到了Transformer 神经网络的重要性和影响。如今,出现了像TrOCR(Transformer OCR)这样的模型,它在准确性方面…...

单例模式优缺点

单例模式是一种创建型设计模式,其主要目的是确保类只有一个实例,并提供全局访问点来获取该实例。单例模式具有一些优点和缺点,下面我将列出它们: **优点:** 1. **全局唯一性**:单例模式确保在应用程序中只…...

【Java 基础篇】Java 字节流详解:从入门到精通

Java中的字节流是处理二进制数据的关键工具之一。无论是文件操作、网络通信还是数据处理,字节流都发挥着重要作用。本文将从基础概念开始,深入探讨Java字节流的使用,旨在帮助初学者理解和掌握这一重要主题。 什么是字节流? 在Ja…...

Vue记录(下篇)

Vuex getters配置项 *Count.vue <template><div><h1>当前求和为&#xff1a;{{$store.state.sum}}</h1><h3>当前求和的10倍为&#xff1a;{{$store.getters.bigSum}}</h3><select v-model.number"n"><option value&q…...

【测试开发】概念篇 · 测试相关基础概念 · 常见开发模型 · 常见测试模型

【测试开发】概念篇 文章目录 【测试开发】概念篇1. 什么是需求1.1 需求的定义1.2 为什么有需求1.3 测试人员眼里的需求1.4 如何深入了解需求 2. 什么是测试用例2.1 为什么有测试用例2.2 练习>手机打电话 3. 什么是bug4. 开发模型和测试模型4.1 软件生命周期4.2 开发模型4.3…...

1. 快速体验 VSCode 和 CMake 创建 C/C++项目

1. 快速体验 VSCode 和 CMake 创建 C/C项目 本章的全部代码和markdown文件地址: CMake_Tutorial&#xff0c;欢迎互相交流. 此次介绍的内容都是针对于 Linux 操作系统上的开发过程. 1.1 安装开发工具 VSCode: 自行下载安装, 然后安装插件 Cmake:在 Ubuntu 系统上, 可以采用 ap…...

【JAVA-Day18】用大白话讲解 Java 中的内存机制

标题 用大白话讲解 Java 中的内存机制摘要引言一、Java 内存机制1.1 栈内存1.2 堆内存 二、Java 如何管理内存三、合理管理内存的必要性与其他方式相比优势劣势建议四、总结参考资料 博主 默语带您 Go to New World. ✍ 个人主页—— 默语 的博客&#x1f466;&#x1f3fb; 《…...

[Hadoop] start-dfs.sh ssh报错

Permission denied (publickey 决解方案 相关命令 cd ~/.sshssh-keygen -t rsa -p""cat id_rsa.pub >> authorized_keyschmod 0600 authorized_keys 相关链接Hadoop: start-dfs.sh permission denied - Stack Overflow Java HotSpot(TM) Server VM warning…...

amlogic 多wifi 多bluetooh 兼容方案

WiFi部分: vendor/amlogic/common/wifi_bt/wifi/configs/wifi.mk 或者 hardware/amlogic/wifi/configs/wifi.mk ################################################################################## realtek wifi ifneq ($(filter rtl8188eu rtl8188ftv rtl8192eu rtl8…...

Apache Hive概述,模拟实现Hive功能,Hive基础架构

1、Apache Hive 概述 1.1、分布式SQL计算 对数据进行统计分析&#xff0c;SQL是目前最为方便的编程工具。 大数据体系中充斥着非常多的统计分析场景 所以&#xff0c;使用SQL去处理数据&#xff0c;在大数据中也是有极大的需求的。 MapReduce支持程序开发&#xff08;Java…...

postgresql|数据库|centos7下基于postgresql-12的主从复制的pgpool-4.4的部署和使用

前言&#xff1a; postgresql数据库只用自身的一些配置是无法做到最优的优化的&#xff0c;需要通过一些外置插件&#xff08;中间件&#xff09;来提高服务器的整体性能&#xff0c;通俗的说就是数据库仅仅依靠自身是无法达到性能最优的&#xff0c;很多时候需要更改数据库的…...

python之pyQt5实例:PyQtGraph的应用

1、显示逻辑 "MainWindow": "这是主窗口&#xff0c;所有的其他组件都会被添加到这个窗口上。", "centralwidget": "这是主窗口的中心部件&#xff0c;它包含了其他的部件。","pushButton": "这是一个按钮&#xff0c…...

Java——键盘输入的几种常见方式

Java——键盘输入的几种常见方式 文章目录&#xff1a; Java——键盘输入的几种常见方式一、IO流二、Scanner类三 、BufferedReader写入 一、IO流 在Java的输入中&#xff0c;是以输入流的形式进入程序&#xff0c;因此无法直接指定输入的类型&#xff0c;仅能读取键盘上的内容…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...