BIT-4-数组
- 一维数组的创建和初始化
- 一维数组的使用
- 一维数组在内存中的存储
- 二维数组的创建和初始化
- 二维数组的使用
- 二维数组在内存中的存储
- 数组越界
- 数组作为函数参数
- 数组的应用实例1:三子棋
- 数组的应用实例2:扫雷游戏
1. 一维数组的创建和初始化
1.1 数组的创建
数组是一组相同类型元素的集合。
数组的创建方式:
type_t arr_name [const_n];
//type_t 是指数组的元素类型
//const_n 是一个常量表达式,用来指定数组的大小
数组创建的实例:
//代码1
int arr1[10];//代码2
int count = 10;
int arr2[count];//数组时候可以正常创建?//代码3
char arr3[10];
float arr4[1];
double arr5[20];
注:数组创建,在C99标准之前, [ ] 中要给一个常量才可以,不能使用变量。在C99标准支持了变长数组的概念,数组的大小可以使用变量指定,但是数组不能初始化。
1.2 数组的初始化
数组的初始化是指,在创建数组的同时给数组的内容一些合理初始值(初始化)。
看代码:
int arr1[10] = {1,2,3};
int arr2[] = {1,2,3,4};
int arr3[5] = {1,2,3,4,5};
char arr4[3] = {'a',98, 'c'};
char arr5[] = {'a','b','c'};
char arr6[] = "abcdef";
数组在创建的时候如果想不指定数组的确定的大小就得初始化。数组的元素个数根据初始化的内容来确定。
但是对于下面的代码要区分,内存中如何分配。
char arr1[] = "abc";
char arr2[3] = {'a','b','c'};
1.3 一维数组的使用
对于数组的使用我们之前介绍了一个操作符: [ ] ,下标引用操作符。它其实就数组访问的操作符。我们来看代码:
#include <stdio.h>
int main()
{int arr[10] = {0};//数组的不完全初始化//计算数组的元素个数int sz = sizeof(arr)/sizeof(arr[0]);//对数组内容赋值,数组是使用下标来访问的,下标从0开始。所以:int i = 0;//做下标for(i=0; i<10; i++)//这里写10,好不好?{arr[i] = i;}//输出数组的内容for(i=0; i<10; ++i){printf("%d ", arr[i]);}return 0;
}
总结:
- 数组是使用下标来访问的,下标是从0开始。
- 数组的大小可以通过计算得到。
int arr[10];
int sz = sizeof(arr)/sizeof(arr[0]);
1.4 一维数组在内存中的存储
接下来我们探讨数组在内存中的存储。
看代码:
#include <stdio.h>int main()
{int arr[10] = {0};int i = 0;int sz = sizeof(arr)/sizeof(arr[0]);for(i=0; i<sz; ++i){printf("&arr[%d] = %p\n", i, &arr[i]);}return 0;
}
仔细观察输出的结果,我们知道,随着数组下标的增长,元素的地址,也在有规律的递增。
由此可以得出结论:数组在内存中是连续存放的。
2. 二维数组的创建和初始化
2.1 二维数组的创建
//数组创建
int arr[3][4];
char arr[3][5];
double arr[2][4];
2.2 二维数组的初始化
//数组初始化
int arr[3][4] = {1,2,3,4};
int arr[3][4] = {{1,2},{4,5}};
int arr[][4] = {{2,3},{4,5}};//二维数组如果有初始化,行可以省略,列不能省略
2.3 二维数组的使用
二维数组的使用也是通过下标的方式。
看代码:
#include <stdio.h>int main()
{int arr[3][4] = {0};int i = 0;for(i=0; i<3; i++){int j = 0;for(j=0; j<4; j++){arr[i][j] = i*4+j;}}for(i=0; i<3; i++){int j = 0;for(j=0; j<4; j++){printf("%d ", arr[i][j]);}}return 0;
}
2.4 二维数组在内存中的存储
像一维数组一样,这里我们尝试打印二维数组的每个元素。
#include <stdio.h>int main()
{int arr[3][4];int i = 0;for(i=0; i<3; i++){int j = 0;for(j=0; j<4; j++){printf("&arr[%d][%d] = %p\n", i, j,&arr[i][j]);}}return 0;
}
通过结果我们可以分析到,其实二维数组在内存中也是连续存储的。
3. 数组越界
数组的下标是有范围限制的。
数组的下规定是从0开始的,如果数组有n个元素,最后一个元素的下标就是n-1。
所以数组的下标如果小于0,或者大于n-1,就是数组越界访问了,超出了数组合法空间的访问。
C语言本身是不做数组下标的越界检查,编译器也不一定报错,但是编译器不报错,并不意味着程
序就是正确的,所以程序员写代码时,最好自己做越界的检查。
#include <stdio.h>int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9,10};int i = 0;for(i=0; i<=10; i++){printf("%d\n", arr[i]);//当i等于10的时候,越界访问了}return 0;
}
二维数组的行和列也可能存在越界。
4. 数组作为函数参数
往往我们在写代码的时候,会将数组作为参数传个函数,比如:我要实现一个冒泡排序(这里要讲算法思想)函数将一个整形数组排序。
那我们将会这样使用该函数:
4.1 冒泡排序函数的错误设计
//方法1:
#include <stdio.h>
void bubble_sort(int arr[])
{int sz = sizeof(arr)/sizeof(arr[0]);//这样对吗?int i = 0;for(i=0; i<sz-1; i++){int j = 0;for(j=0; j<sz-i-1; j++){if(arr[j] > arr[j+1]){int tmp = arr[j];arr[j] = arr[j+1];arr[j+1] = tmp;}}}
}int main()
{int arr[] = {3,1,7,5,8,9,0,2,4,6};bubble_sort(arr);//是否可以正常排序?for(i=0; i<sizeof(arr)/sizeof(arr[0]); i++){printf("%d ", arr[i]);}return 0;
}
方法1,出问题,那我们找一下问题,调试之后可以看到 bubble_sort 函数内部的 sz ,是1。
难道数组作为函数参数的时候,不是把整个数组的传递过去?
4.2 数组名是什么?
#include <stdio.h>int main()
{int arr[10] = {1,2,3,4,5};printf("%p\n", arr);printf("%p\n", &arr[0]);printf("%d\n", *arr);//输出结果return 0;
}
结论:
数组名是数组首元素的地址。(有两个例外)
如果数组名是首元素地址,那么:
int arr[10] = {0};
printf("%d\n", sizeof(arr));
为什么输出的结果是:40?
补充:
1. sizeof(数组名),计算整个数组的大小,sizeof内部单独放一个数组名,数组名表示整个数 组。
2. &数组名,取出的是数组的地址。&数组名,数组名表示整个数组。
除此1,2两种情况之外,所有的数组名都表示数组首元素的地址。
4.3 冒泡排序函数的正确设计
当数组传参的时候,实际上只是把数组的首元素的地址传递过去了。
所以即使在函数参数部分写成数组的形式: int arr[] 表示的依然是一个指针: int *arr 。
那么,函数内部的 sizeof(arr) 结果是4。
如果 方法1 错了,该怎么设计?
//方法2
void bubble_sort(int arr[], int sz)//参数接收数组元素个数
{//代码同上面函数
}
int main()
{int arr[] = {3,1,7,5,8,9,0,2,4,6};int sz = sizeof(arr)/sizeof(arr[0]);bubble_sort(arr, sz);//是否可以正常排序?for(i=0; i<sz; i++){printf("%d ", arr[i]);}return 0;
}
5. 数据实例:
5.1 数组的应用实例1:三子棋
5.2 数组的应用实例2:扫雷游戏
因为篇幅有限,所以这两个数组的应用实例我会单独做两篇博客详细讲解。
相关文章:

BIT-4-数组
一维数组的创建和初始化一维数组的使用 一维数组在内存中的存储 二维数组的创建和初始化二维数组的使用二维数组在内存中的存储 数组越界数组作为函数参数数组的应用实例1:三子棋 数组的应用实例2:扫雷游戏 1. 一维数组的创建和初始化 1.1 数组的创建 …...

L9945的H桥续流模式
在H桥的配置中,包括两种续流模式:主动续流和被动续流。 一个L9945可输出两个H桥驱动。HB1在CMD3中配置,HB2在CMD7中配置。 主动续流:通过Q3的MOS的二极管来续流 被动续流:通过Q3外部的二极管来续流...

Ubuntu20.04安装Nvidia显卡驱动、CUDA11.3、CUDNN、TensorRT、Anaconda、ROS/ROS2
1.更换国内源 打开终端,输入指令: wget http://fishros.com/install -O fishros && . fishros 选择【5】更换系统源,后面还有一个要输入的选项,选择【0】退出,就会自动换源。 2.安装NVIDIA驱动 这一步最痛心…...

linux下使用crontab定时器,并且设置定时不执行的情况,附:项目启动遇到的一些问题和命令
打开终端,以root用户身份登录。 运行以下命令打开cron任务编辑器: crontab -e 如果首次编辑cron任务,会提示选择编辑器。选择你熟悉的编辑器,比如nano或vi,并打开相应的配置文件。 在编辑器中,添加一行类…...
linux下二进制安装docker最新版docker-24.0.6
一.基础环境 本次实操是公司技术培训下基于centos7.9操作系统安装docker最新版docker-24.0.6,下载地址是:https://download.docker.com/linux/static/stable/x86_64/docker-24.0.6.tgz 二. 下载Docker压缩包 mkdir -p /opt/docker-soft cd /opt/docker…...

计算机视觉 01(介绍)
一、深度学习 1.1 人工智能 1.2 人工智能,机器学习和深度学习的关系 机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示[参考:黑…...
Java下部笔记
目录 一.双列集合 1.Map 2.Map的遍历方式 3.可变参数 4.Collection中的默认方法 5.不可变集合(map不会) 二.Stream流 1.获取stream流 2.中间方法 3.stream流的收集操作 4.方法引用 1.引用静态方法 2.引用成员方法 3.引用构造方法 4.使用类…...

链表基本操作
单链表简介 单链表结构 头指针是指向链表中第一个结点的指针 首元结点是指链表中存储第一个数据元素a1的结点 头结点是在链表的首元结点之前附设的一个结点;数据域内只放空表标志和表长等信息 单链表存储结构定义: typedef struct Lnode { ElemTyp…...

Linux学习笔记-Ubuntu系统下配置用户ssh只能访问git仓库
目录 一、基本信息1.1 系统信息1.2 git版本[^1]1.2.1 服务器端git版本1.2.2 客户端TortoiseGit版本1.2.3 客户端Git for windows版本 二、创建git用户和群组[^2]2.1 使用groupadd创建群组2.2 创建git用户2.2.1 使用useradd创建git用户2.2.2 配置新建的git用户ssh免密访问 2.3 创…...

央媒发稿不能改?媒体发布新闻稿有哪些注意点
传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 “央媒发稿不能改”是媒体行业和新闻传播领域的普遍理解。央媒,即中央主要媒体,是权威性的新闻源,当这些媒体发布新闻稿或报道时,其他省、…...

计算机竞赛 深度学习 opencv python 公式识别(图像识别 机器视觉)
文章目录 0 前言1 课题说明2 效果展示3 具体实现4 关键代码实现5 算法综合效果6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的数学公式识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学…...

KPM算法
概念 KMP(Knuth–Morris–Pratt)算法是一种字符串匹配算法,用于在一个主文本字符串中查找一个模式字符串的出现位置。KMP算法通过利用模式字符串中的重复性,避免无意义的字符比较,从而提高效率。 KMP算法的核心思想是…...

全流程GMS地下水数值模拟及溶质(包含反应性溶质)运移模拟技术教程
详情点击公众号链接:全流程GMS地下水数值模拟及溶质(包含反应性溶质)运移模拟技术教程 前言 GMS三维地质结构建模 GMS地下水流数值模拟 GMS溶质运移数值模拟与反应性溶质运移模 详情 1.GMS的建模数据的收集、数据预处理以及格式等ÿ…...

GE D20 EME 10BASE-T电源模块产品特点
GE D20 EME 10BASE-T 电源模块通常是工业自动化和控制系统中的一个关键组件,用于为系统中的各种设备和模块提供电源。以下是可能包括在 GE D20 EME 10BASE-T 电源模块中的一些产品特点: 电源输出:D20 EME 模块通常提供一个或多个电源输出通道…...

游戏工作时d3dcompiler_47.dll缺失怎么修复?5种修复方法分享
游戏提示 d3dcompiler_47.dll 缺失的困扰,相信许多玩家都遇到过。这种情况通常会导致游戏无法正常运行,给玩家带来很大的不便。那么,该如何解决这个问题呢?小编将为大家介绍几种解决方法,希望对大家有所帮助。 首先&am…...

关于激光探测器光斑质心算法在FPGA硬件的设计
目录 0引言 1CCD采集图像质心算法 2基于FPGA的图像质心算法 3仿真结果与分析 4结论 0引言 在一些姿态检测的实际应用中,需要在被测对象上安装激光探测器[1],利用CCD相机捕捉激光光斑来检测观测对象的实际情况,光斑图像质心坐标的提取是图…...

理清SpringBoot CURD处理逻辑、顺序
💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! 理清SpringBoot CURD处理逻辑、顺序 Controller(控制器): 控制器接收来自客户端的请求,并负责处理请求的路由和参数解析…...
缓存读写淘汰算法W-TinyLFU算法
在W-TinyLFU中,每个缓存项都会被赋予一个权重。这个权重可以表示缓存项的大小、使用频率、是否是热数据等因素。每次需要淘汰缓存时,W-TinyLFU会选择小于一定阈值的权重的缓存项进行淘汰,以避免淘汰热数据。 另外,W-TinyLFU也会根…...

C++中的 throw详解
在《C++异常处理》一节中,我们讲到了 C++ 异常处理的流程,具体为: 抛出(Throw)--> 检测(Try) --> 捕获(Catch) 异常必须显式地抛出,才能被检测和捕获到;如果没有显式的抛出,即使有异常也检测不到。在 C++ 中,我们使用 throw 关键字来显式地抛出异常,它的用…...
vue 封装Table组件
基于element-plus UI 框架封装一个table组件 在项目目录下的components新建一个Table.vue <template><section class"wrap"><el-tableref"table":data"tableData" v-loading"loading" style"width: 100%":…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...