当前位置: 首页 > news >正文

分类预测 | Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测

分类预测 | Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测

目录

    • 分类预测 | Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测
      • 效果一览
      • 基本介绍
      • 研究内容
      • 程序设计
      • 参考资料

效果一览

1
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测(Matlab完整程序和数据)
1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。
2.多特征输入模型,直接替换数据就可以用。
3.语言为matlab。分类效果图,混淆矩阵图。
4.分类效果图,混淆矩阵图。
5.MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测。
运行环境matlab2018及以上。
经过特征选择后,保留9个特征的序号为:
1 3 5 7 8 9 10 11 12

研究内容

最大互信息系数(Maximum Information Coefficient,MIC)是一种常用的数据特征选择算法,用于发现特征之间的非线性关系。它可以测量两个变量之间的最大相关性。首先,准备一个包含多个特征和目标变量的数据集。对于每对特征和目标变量,计算它们之间的互信息值。互信息度量了两个变量之间的相关性。将计算得到的互信息值进行排序,按照互信息值的大小进行降序排列。从排序后的互信息值列表中选择具有最大互信息系数的特征。可以根据具体需求选择一定数量的特征。最大互信息系数算法的核心思想是找到特征与目标变量之间的最大相关性,因此选择具有最大互信息系数的特征可以被认为是最相关的特征。这种选择方法可以帮助排除那些与目标变量关联较弱的特征,提高模型的性能和效率。在实际应用中,可以结合其他特征选择方法或降维技术来进一步优化特征选择过程。

程序设计

  • 完整程序和数据下载方式私信博主回复Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test ;%%  特征选择
k = 9;        % 保留特征个数
[save_index, mic] = mic_select(p_train, t_train, k);%%  输出选择特征的对应序号
disp('经过特征选择后,保留9个特征的序号为:')
disp(save_index')%%  特征重要性
figure
bar(mic)
xlabel('输入特征序号')
ylabel('最大互信息系数')%%  特征选择后的数据集
p_train = p_train(save_index, :);
p_test  = p_test (save_index, :);%%  输出编码
t_train = ind2vec(t_train);
t_test  = ind2vec(t_test );%%  创建网络
net = newff(p_train, t_train, 5);%%  设置训练参数
net.trainParam.epochs = 1000;  % 最大迭代次数
net.trainParam.goal = 1e-6;    % 误差阈值
net.trainParam.lr = 0.01;      % 学习率%%  训练网络
net = train(net, p_train, t_train);%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关文章:

分类预测 | Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测

分类预测 | Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测 目录 分类预测 | Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测效果一览基本介绍研究内容程序设计参考…...

phpcms v9对联广告关闭左侧广告

修改目录“\caches\poster_js”下的文件“53.js”&#xff0c;修改函数“showADContent()” 将代码&#xff1a; str "<div idPCMSAD_"this.PosID"_"i" style"align_b":"x"px;top:"y"px;width:"this.Width&…...

7.2.4 【MySQL】匹配范围值

回头看我们 idx_name_birthday_phone_number 索引的 B 树示意图&#xff0c;所有记录都是按照索引列的值从小到大的顺序排好序的&#xff0c;所以这极大的方便我们查找索引列的值在某个范围内的记录。比方说下边这个查询语句&#xff1a; SELECT * FROM person_info WHERE nam…...

1400*C. No Prime Differences(找规律数学)

解析&#xff1a; 由于 1 不是质数&#xff0c;所以我们令每一行的数都相差 1 对于行间&#xff0c;分为 n、m之中有存在偶数和都为奇数两种情况。 如果n、m存在偶数&#xff0c;假设m为偶数。 如果都为奇数&#xff0c;则&#xff1a; #include<bits/stdc.h> using name…...

Python基础之装饰器

文章目录 1 装饰器1.1 定义1.2 使用示例1.2.1 使用类中实例装饰器1.2.2 使用类方法装饰器1.2.3 使用类中静态装饰器1.2.4 使用类中普通装饰器 1.3 内部装饰器1.3.1 property 2 常用装饰器2.1 timer:测量执行时间2.2 memoize:缓存结果2.3 validate_input:数据验证2.4 log_result…...

IDEA设置Maven 镜像

第一步&#xff1a;右键项目&#xff0c;选择Maven->Create ‘settings.xml’ 已经存在的话是Open ‘settings.xml’&#xff1a; 第二步&#xff1a;在settings.xml文件中增加阿里云镜像地址&#xff0c;代码如下&#xff1a; <?xml version"1.0" encodin…...

项目评定等级L1、L2、L3、L4

软件项目评定等级的数量可以因不同的评定体系和标准而异。一般情况下&#xff0c;项目评定等级通常按照项目的规模、复杂性和风险等因素来划分&#xff0c;可以有多个等级&#xff0c;常见的包括&#xff1a; L1&#xff08;Level 1&#xff09;&#xff1a;通常表示较小规模、…...

一个基于SpringBoot+Vue前后端分离学生宿舍管理系统详细设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…...

工作相关----《配置bond》

进入到/etc/sysconfig/network-scripts&#xff0c;按照要求配置主备关系 vim ifcfg-bond0&#xff0c;编写主要内容如下&#xff1a; /*mode1 表示主备份策略&#xff0c;miimon100 系统每100毫秒监测一次链路连接状态&#xff0c; 如果有一条线路不通就转入另一条线路*/ BOND…...

Nacos、ZooKeeper和Dubbo的区别

Nacos、ZooKeeper和Dubbo是三个不同的分布式系统组件&#xff0c;它们之间有以下几点区别&#xff1a; 功能定位&#xff1a;Nacos主要提供服务发现、配置管理和服务治理等功能&#xff0c;而ZooKeeper主要是分布式协调服务&#xff0c;提供了分布式锁、分布式队列等原语&#…...

刷一下算法

记录下自己的思路与能理解的解法,可能并不是最优解法,不定期持续更新~ 1.盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容…...

three.js——GUI的使用

GUI的使用 效果图1、导入gui2、创建一个GUI对象3、通过gui调用方法 name:按钮的名称 效果图 1、导入gui // 导入ligui import { GUI } from three/examples/jsm/libs/lil-gui.module.min.js2、创建一个GUI对象 const gui new GUI()3、通过gui调用方法 name:按钮的名称 // 创…...

LeetCode 332. Reconstruct Itinerary【欧拉回路,通路,DFS】困难

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

236. 二叉树的最近公共祖先 Python

文章目录 一、题目描述示例 1示例 2示例 3 二、代码三、解题思路 一、题目描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个节点 p、q&#xff0c;最近公共祖先表示为一个节点 x&#xff0c;满…...

WPF中DataGrid控件绑定数据源

步骤 创建数据源&#xff1a;首先&#xff0c;我们需要创建一个数据源&#xff0c;可以是一个集合&#xff08;如List、ObservableCollection等&#xff09;&#xff0c;也可以是一个DataTable对象。数据源中的每个元素代表一行数据。 设置DataGrid的ItemsSource属性&#xff…...

Linux arm64 set_memory_ro/rw函数

文章目录 一、函数简介1.1 简介1.2 change_memory_common1.3 __change_memory_common 二、apply_to_page_range函数2.1 apply_to_page_range2.2 apply_to_p4d_range2.3 apply_to_pud_range2.4 apply_to_pmd_range2.5 apply_to_pte_range 三、hook系统调用参考资料 一、函数简介…...

安达发|APS排单软件中甘特图的应用

近几年来&#xff0c;企业对生产效率和管理水平的要求越来越高。为了提高生产效率&#xff0c;降低生产成本&#xff0c;许多企业开始引入先进的生产计划与调度系统&#xff08;APS&#xff09;&#xff0c;实现生产过程的自动化、智能化管理。APS排产软件是一种能够根据企业的…...

快速上手Linux基础开发工具

目录 软件包管理器 概念理解 用法示例 - 以yum为例 vim 模式的切换 常用操作 插件和配置 gcc/g gdb make / makefile 软件包管理器 概念理解 在Linux下安装软件的话&#xff0c;一个比较原始的办法是下载程序的源代码&#xff0c;然后进行编译&#xff0c;进而得到…...

【开发工具】idea 的全局搜索快捷键(Ctrl+shift+F)失效

文章目录 前言1. 取消 输入法的快捷键&#xff08;推荐使用&#xff09;2.更改 idea的快捷键3. 热键占用总结 前言 当你发现在idea 中看到用于全局搜索的快捷键就是 CtrlshiftF&#xff0c;可是怎么按都不管用的时候&#xff0c;你就不要再执着于自己的操作继续狂点电脑按键了…...

港联证券:“火箭蛋”来袭 蛋价涨势能否延续?

上个交易周&#xff08;9月11日至15日&#xff09;&#xff0c;鸡蛋期货商场呈现了意想不到的涨势。9月15日&#xff0c;鸡蛋期货多个合约大涨&#xff0c;其中2310合约涨超5.6%&#xff0c;主力合约2311盘中两度触及涨停&#xff0c;最终收涨6%。业内人士以为&#xff0c;鸡蛋…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...

深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙

WebGL&#xff1a;在浏览器中解锁3D世界的魔法钥匙 引言&#xff1a;网页的边界正在消失 在数字化浪潮的推动下&#xff0c;网页早已不再是静态信息的展示窗口。如今&#xff0c;我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室&#xff0c;甚至沉浸式的V…...