torch 和paddle 的GPU版本可以放在同一个conda环境下吗
新建conda 虚拟环境,python 版本3.8.17
虚拟机,系统centos 7,内核版本Linux fastknow 3.10.0-1160.92.1.el7.x86_64 ,显卡T4,nvidia-smi ,460.32.03,对应cuda 11.2,安装cuda 11.2和cudnn,conda 版本23.1
conda 安装paddle GPU 版本2.4.2+cuda112,pip安装torch 2.0.1+cuda11.7,
单执行
import paddle
paddle.utils.run_check()
不报错,并且基于paddle的应用也可以使用
单执行
import torch
torch.cuda.is_available()
print(torch.rand(3,3).cuda())
不报错,并且基于torch的应用也可以使用
但是....,如果同时导入2个包,问题就来了
import torch
torch.rand([3,3]).cuda()
import paddle
paddle.utils.run_check()
第3行就会报如下错误
ExternalError: CUBLAS error(15).
[Hint: Please search for the error code(15) on website (https://docs.nvidia.com/cuda/cublas/index.html#cublasstatus_t) to get Nvidia's official solution and advice about CUBLAS Error.] (at /paddle/paddle/phi/kernels/funcs/blas/blas_impl.cu.h:35)
[operator < matmul_v2 > error]
并且paddle gpu版本还没法使用,会报和上述类似的错误,如下所示
(External) CUBLAS error(15).
[Hint: Please search for the error code(15) on website (https://docs.nvidia.com/cuda/cublas/index.html#cublasstatus_t) to get Nvidia's official solution and advice about CUBLAS Error.] (at /paddle/paddle/phi/kernels/funcs/blas/blas_impl.cu.h:35)
[operator < fc > error]
换个顺序执行
import paddle
paddle.utils.run_check()
import torch
第3行导入torch 就会报如下错误
File "/虚拟环境名字/lib/python3.8/site-packages/torch/__init__.py", line 229, in <module>
from torch._C import * # noqa: F403
ImportError: /home/haieradmin/test/miniconda3/envs/langchain/lib/python3.8/site-packages/torch/lib/libtorch_cuda.so: symbol cudaGraphDebugDotPrint, version libcudart.so.11.0 not defined in file libcudart.so.11.0 with link time reference
但是换成办公电脑win10 系统,版本号21H2,内部版本19044.1889,conda 4.13.0,显卡3080,nvidia-smi 驱动512.95,cuda 11.6,安装cuda 11.6和cudnn,paddle 2.4.2+cuda116,torch 1.13.1+cuda116, 两者可以并存且基本很好的工作(没有看到报错)
然后再换成新的服务器,ubuntu 20.04,显卡T4,nvidia-smi 515.65.01,cuda 11.7,安装cuda 11.7和cudnn 8.8.0,然后创建虚拟环境,安装torch 和paddle,两者基本可以并存并很好的工作
再次在上述虚拟机上重新新建conda 环境,先pip安装torch(非源码安装,官网上貌似没有cuda11.2对应的torch,安装的cudatoolkit是11.3),再pip安装paddle+cuda112,发现torch 和paddle 一样存在冲突,和上面的错误一样
然后卸载原来的torch,再重新安装低版本cuda对应的torch ,对应的cudatoolkit 为11.1,pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
再次运行发现,两者已经不冲突了,因此这个配置是torch 1.10.1+cu111,paddle 2.4.2+cuda112,两者可以并存并可以很好的工作。
原因分析: 貌似高版本torch自带cuda,它使用的cuda 是nvidia-smi 显示的cuda 版本,不需要机子安装的那个cuda,paddle 使用的cuda 也是nvidia-smi 显示的cuda 版本,但是paddle 需要安装cuda 和cudnn,torch 工作只需要驱动的cuda 兼容torch带的cuda 就可以。所以同时使用torch 和paddle ,要尽量做到nvidia-smi ,cuda, cudnn ,torch,paddle 的cuda 版本要一致,如果实在不一致(如torch没有cuda112的版本,paddle没有cuda113、cuda114的版本),建议先安装paddle,因为paddle需要安装cuda 和cudnn ,确保paddle正常工作后,再调测不同版本的torch,仅供参考
参考资料:
1https://github.com/PaddlePaddle/Paddle/issues/49519
2进行模型预测遇到以下错误OSError: (External) CUBLAS error(15)
相关文章:
torch 和paddle 的GPU版本可以放在同一个conda环境下吗
新建conda 虚拟环境,python 版本3.8.17 虚拟机,系统centos 7,内核版本Linux fastknow 3.10.0-1160.92.1.el7.x86_64 ,显卡T4,nvidia-smi ,460.32.03,对应cuda 11.2,安装cuda 11.2和cudnn,conda…...
MYBATIS-PLUS入门使用、踩坑记录
转载: mybatis-plus入门使用、踩坑记录 - 灰信网(软件开发博客聚合) 首先引入MYBATIS-PLUS依赖: SPRING BOOT项目: <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus…...
C# 静态类和sealed类(密封类)的区别
网上看到很多文章写静态类,和密封类,但是鲜有它们的对比总结,在此简单总结一下: 静态类(Static Class): 静态类不能被实例化,其成员都是静态的,可以通过类名直接访问。静…...
el-table如何实现自动缩放,提示隐藏内容
前提问题:大屏展示中某一个区域是表格内容,当放大或缩小网页大小时,表格宽度随之缩放,但表格内容未进行缩放,需要表格内容与网页大小同时进行缩放,且表头和表格内容宽度不够未显示全时,需要进行…...
CRM客户管理软件对出海企业的帮助与好处
2023我们走出了疫情的阴霾,经济下行压力大,面对内需的不足,国内企业纷纷选择出海,拓展海外业务增加企业营收。企业出海不是一件易事,有了CRM系统可以让公司事半功倍,下面就来说一说CRM客户管理软件能为出海…...
【QT--使用百度地图API显示地图并绘制路线】
QT--使用百度地图API显示地图并绘制路线 前言准备工作申请百度地图密钥(AK)安装开发环境 开发过程新建项目ui界面GPSManager类主窗口Map 效果展示 前言 先吐槽一下下,本身qt学的就不咋滴,谁想到第一件事就是让写一个上位机工具,根据CAN总线传…...
C数据结构二.练习题
一.求级数和 2.求最大子序列问题:设给定一个整数序列 ai.az..,a,(可能有负数).设计一个穷举算法,求a 的最大值。例如,对于序列 A {1,-1,1,-1,-1,1,1,1,1.1,-1,-1.1,-1,1,-1},子序列 A[5..9](1,1,1,1,1)具有最大值5 3.设有两个正整数 m 和n,编写一个算法 gcd(m,n),求它们的最大公…...
猫头虎博主第5️⃣期赠书活动:《Java官方编程手册(第12版·Java 17)套装上下册》
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...
(1)数据库 MSQ 数据库 安装 使用 以及增删改查
下载官网:MySQL :: Download MySQL Shell 常见的数据库分为: 关系型数据库, Oracle、MySQL、SQLServer、Access非关系型数据库, MongoDB、Redis、Solr、ElasticSearch、Hive、HBase 安装过程 使用过程...
什么测试自动化测试?
什么测试自动化测试? 做测试好几年了,真正学习和实践自动化测试一年,自我感觉这一个年中收获许多。一直想动笔写一篇文章分享自动化测试实践中的一些经验。终于决定花点时间来做这件事儿。 首先理清自动化测试的概念,广义上来讲&a…...
【踩坑篇】代码中使用 Long 作为 Map的Key存在的问题
本周的工作结束,详述一些在项目代码中实际遇到的一些坑。 代码中遇到这样一个场景: 有个业务接口,接口返回的值是一个JSON格式的字符串,通过JSON解析的方式,解析为格式为: Map<Long, Map<String, O…...
微服务保护-授权规则/规则持久化
授权规则 基本规则 授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。 白名单:来源(origin)在白名单内的调用者允许访问 黑名单:来源(origin)在黑名单内的调用者不允许访问 点…...
练习敲代码速度
2023年9月18日,周一晚上 今晚不想学习,但又不想玩游戏,于是找了一些练习敲代码的网站来玩玩,顺便练习一下敲代码的速度 目录 参考资料个人推荐第一个 第二个第三个 参考资料 电脑打字慢,有哪些比较好的练打字软件&a…...
uni-app:实现条件判断展示图片(函数判定+三目运算)
一、多条件判断(通过函数进行图片展示) 效果 代码 在data中定义图片信息和要传递的数据信息,在src中写入函数并携带要传递的数据,通过传递的数据在函数中进行判断,并返回对应的图片信息 <template><view&…...
http概念
概念:HTTP,hyper text transfer protocol,超文本传输协议,规定了浏览器和服务器之间数据传输的规则。 特点: 1.基于TCP协议:面向连接,安全。 2.基于请求-响应模型的:一次请求对应一…...
Postman应用——Variable变量使用(Global、Environment和Collection)
文章目录 变量的使用同名变量优先级Postman内置变量 Global、Environment和Collection变量设置,点击查看。 变量的使用 语法: {{变量名}}使用{{}}包裹变量名,引用设置好的变量。 注意:Environment变量引用前需要先选择已有的环…...
php高级 TP+Redis实现发布订阅和消息推送案例实战
Redis 的发布-订阅模型是一种消息通信模式,它允许客户端之间通过特定的频道进行通信。在这种模型中,有些客户端负责发布消息(发布者),而其他客户端则订阅它们感兴趣的频道并接收这些消息(订阅者)…...
Python 基础入门
给我家憨憨写的python教程 ——雁丘 Python解释器Pycharm的安装部署 关于本专栏一 Python简介1.1 Python优点1.2 支持的编程方式1.3 版本兼容问题1.4 Python的开发环境1.4.1 常用的 Python 编辑器1.4.2 常用的 Python IDE1.4.3 Python IDLE1.4.4 第三方库安装 1.5 Python 的运…...
【跟小嘉学 Rust 编程】二十九、Rust 中的零拷贝序列化解决方案(rkyv)
系列文章目录 【跟小嘉学 Rust 编程】一、Rust 编程基础 【跟小嘉学 Rust 编程】二、Rust 包管理工具使用 【跟小嘉学 Rust 编程】三、Rust 的基本程序概念 【跟小嘉学 Rust 编程】四、理解 Rust 的所有权概念 【跟小嘉学 Rust 编程】五、使用结构体关联结构化数据 【跟小嘉学…...
路由器端口转发
什么是路由器端口转发 路由器端口转发是一种网络配置技术,用于将公共网络(如互联网)上的请求转发到私有网络中的特定设备或服务。它允许外部设备通过路由器访问内部网络中的设备或服务,实现网络上的通信和互动。 路由器端口转发…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
