BERT 快速理解——思路简单描述
定义:
BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,它基于Transformer架构,通过在大规模的未标记文本上进行训练来学习通用的语言表示。
输入
在BERT中,输入是一个文本序列,通常以单词或子词(如WordPiece)的形式表示。输入序列需要经过预处理步骤,包括分词、添加特殊标记(如起始标记[CLS]和分隔标记[SEP]),并转化为对应的词索引(input_ids)。此外,还需要创建一个注意力掩码(attention_mask),用于指示哪些位置是真实的单词,哪些位置是填充的。输入序列的长度通常会被填充或截断为固定长度。

输出
BERT模型的输出包含以下部分:
- last_hidden_state(最后一层的隐藏状态):这是BERT模型最后一层的输出,它是一个三维张量,形状为[batch_size, sequence_length, hidden_size]。它包含了输入序列的每个位置的隐藏表示,其中hidden_size是BERT模型的隐藏单元大小。
- pooler_output(池化层输出):这是经过池化层处理后的输出,形状为[batch_size, hidden_size]。它是对最后一层隐藏状态进行汇总得到的整个句子的表示,通常用于句子级别的任务。
- hidden_states(所有层的隐藏状态):这是一个包含了每一层隐藏状态的张量。其中,hidden_states[0]对应输入的嵌入层,而hidden_states[i](其中1 <= i <= num_hidden_layers)对应BERT模型的第i层隐藏状态。
输出的含义:
- last_hidden_state中的每个位置表示了输入序列在语义和句法上的编码信息,可以用于下游任务的特征提取和表示学习。
- pooler_output是对整个句子进行汇总的表示,可以用于句子级别的分类或回归任务。
hidden_states提供了每一层的隐藏状态,可以用于进一步的分析、可视化或其他任务的需求。
关于层数:
Transformer模型中的编码器层和解码器层的数量可以根据具体的模型架构和任务需求进行设置。通常情况下,Transformer模型由多个编码器层和解码器层组成。
在经典的Transformer模型中,如"Attention Is All You Need"论文所述,编码器和解码器都包含了6个层。这个设置是基于作者的经验和实验结果得出的,并且在许多自然语言处理任务中表现良好。
BERT模型引入了Transformer的编码器部分,因此,BERT的层数也是基于Transformer的6层编码器进行扩展的。BERT-Base模型具有12个编码器层,而BERT-Large模型具有24个编码器层。这样的设计选择是为了增加模型的表示能力和语义学习能力。
相关文章:
BERT 快速理解——思路简单描述
定义: BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,它基于Transformer架构,通过在大规模的未标记文本上进行训练来学习通用的语言表示。 输入 在BERT中,输入…...
二叉树实现的相关函数
1.二叉树的创建 BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi) { if (n0||a[*pi] #){ (*pi);return NULL;}BTNode* root (BTNode*)malloc(sizeof(BTNode));root->_data a[(*pi)];root->_left BinaryTreeCreate(a, --n, pi);root->_right Binary…...
Redis面试题(二)
文章目录 前言一、Redis 支持的 Java 客户端都有哪些?官方推荐用哪个?二、Redis 和 Redisson 有什么关系?三、Jedis 与 Redisson 对比有什么优缺点?四、说说 Redis 哈希槽的概念?五、Redis 集群的主从复制模型是怎样的…...
STP介绍
目录 STP概述 二层环路带来的问题 1.广播风暴 2.MAC地址漂移问题 3.多帧复制---这个好理解,同一个数据帧被重复收到多次,被称为多帧复制。 802.1D生成树 STP的BPDU BPDU主要分为两大类 配置BPDU RPC COST 配置BPDU的工作过程 TCN BPDU TCN…...
numpy 和 tensorflow 中的各种乘法(点乘和矩阵乘)
嗨喽,大家好呀~这里是爱看美女的茜茜呐 👇 👇 👇 更多精彩机密、教程,尽在下方,赶紧点击了解吧~ python源码、视频教程、插件安装教程、资料我都准备好了,直接在文末名片自取就可 点乘和矩阵乘…...
(图论) 1020. 飞地的数量 ——【Leetcode每日一题】
❓ 1020. 飞地的数量 难度:中等 给你一个大小为 m x n 的二进制矩阵 grid ,其中 0 表示一个 海洋单元格、1 表示一个 陆地单元格。 一次 移动 是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过 grid 的边…...
c++ 重载、重写、覆盖
重载:指在同一作用域内,有多个同名但参数不同的函数的现象,叫重载;可以是任何用户定义的函数,例如 类成员函数、类静态函数、普通函数重写:子类重写父类的同名函数,只要子类出现有父类的同名函数…...
Python异步编程高并发执行爬虫采集,用回调函数解析响应
一、问题:当发送API请求,读写数据库任务较重时,程序运行效率急剧下降。 异步技术是Python编程中对提升性能非常重要的一项技术。在实际应用,经常面临对外发送网络请求,调用外部接口,或者不断更新数据库或文…...
SpriteKit与Swift配合:打造您的第一个简易RPG游戏的步骤指南
1. 简介: RPG(Role-Playing Game)游戏是一种角色扮演游戏,它允许玩家在一个虚拟的游戏世界中扮演一个或多个角色。在本教程中,我们将使用Apple的2D游戏框架SpriteKit和Swift编程语言来创建一个简单的RPG游戏。我们将从…...
服务网格的面临挑战:探讨服务网格实施中可能遇到的问题和解决方案
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
leetcode61 旋转链表
题目 给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置。 示例 输入:head [1,2,3,4,5], k 2 输出:[4,5,1,2,3] 解析 这道题属实不好想:需要计算出链表的长度,然后在k > n的…...
【学习笔记】各类基于决策单调性的dp优化
文章目录 对于决策单调性的一般解释关于决策单调性的证明四边形不等式一维dp区间dp一种二维dp一些满足四边形不等式的函数类 与图形相结合 决策单调性的常见优化手段二分队列二分栈分治类莫队做法 SMAWKWQS二分WQS多解情况满足四边形不等式的序列划分问题的答案凸性以及WQS二分…...
【C++】构造函数初始化列表 ⑤ ( 匿名对象 生命周期 | 构造函数 中 不能调用 构造函数 )
文章目录 一、匿名对象 生命周期1、匿名对象 生命周期 说明2、代码示例 - 匿名对象 生命周期 二、构造函数 中调用 构造函数1、构造函数 中 不能调用 构造函数2、代码示例 - 构造函数中调用构造函数 构造函数初始化列表 总结 : 初始化列表 可以 为 类的 成员变量 提供初始值 ;…...
Knife4j系列--使用方法
原文网址:Knife4j系列--使用/教程/实例/配置_IT利刃出鞘的博客-CSDN博客...
pmp项目管理考试是什么?适合哪些人学?
PMP,简单点说,就是美国PMI为考察项目管理人士的专业能力而设立的考试。 该流程以知识和任务驱动型指南评估从业者的能力,同时确定项目经理能力行业标准,包括各项知识、任务和技能的特点、重要性与运用频率。(考纲原文…...
CSDN博客可以添加联系方式了
csdn博客一直不允许留一些联系方式,结果是官方有联系方式路径 在首页,往下拉,左侧就有 点击这个即可添加好友了~ 美滋滋,一起交流, 学习技术 ~...
小程序隐私弹窗的实现
小程序的开发者对于微信官方来说是有爱有恨,三天二头整事是鹅厂的一贯风格。 隐私弹窗的几个要点 回归正题,小程序隐私弹窗的几个要点: 1、何时弹出用户隐私协议的弹窗? 2、是每次进小程序都弹出来吗? 这两个想明…...
【JavaEE】多线程案例-单例模式
文章目录 1. 前言2. 什么是单例模式3. 如何实现单例模式3.1 饿汉模式3.2 懒汉模式4. 解决单例模式中遇到的线程安全问题4.1 加锁4.2 加上一个判断解决频繁加锁问题4.2 解决因指令重排序造成的线程不安全问题 1. 前言 单例模式是我们面试中最常考到的设计模式。什么是设计模式呢…...
社区分享|MeterSphere变身“啄木鸟”,助力云帐房落地接口自动化测试
云帐房网络科技有限公司(以下简称为“云帐房”)成立于2015年3月,以“成为最值得信赖的税务智能公司”为愿景,运用人工智能、大数据等互联网技术,结合深厚的财税行业服务经验,为代账公司和中大型企业提供智能…...
fpga内嵌逻辑分析仪使用方法
文章目录 前言一、方法1 — 使用 IP 核创建 ILA 调试环境1、创建 ILA ip 核2、进行例化3、生成比特流文件4、下载程序5、进行在线调试 二、方法2 — 使用 Debug 标记创建 ILA1、Debug 标记相关信号2、综合操作3、设置 Set Up Debug4、生成比特文件5、下载程序6、进行在线调试 前…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
libfmt: 现代C++的格式化工具库介绍与酷炫功能
libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全:…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
如何通过git命令查看项目连接的仓库地址?
要通过 Git 命令查看项目连接的仓库地址,您可以使用以下几种方法: 1. 查看所有远程仓库地址 使用 git remote -v 命令,它会显示项目中配置的所有远程仓库及其对应的 URL: git remote -v输出示例: origin https://…...
理想汽车5月交付40856辆,同比增长16.7%
6月1日,理想汽车官方宣布,5月交付新车40856辆,同比增长16.7%。截至2025年5月31日,理想汽车历史累计交付量为1301531辆。 官方表示,理想L系列智能焕新版在5月正式发布,全系产品力有显著的提升,每…...
mcts蒙特卡洛模拟树思想
您这个观察非常敏锐,而且在很大程度上是正确的!您已经洞察到了MCTS算法在不同阶段的两种不同行为模式。我们来把这个关系理得更清楚一些,您的理解其实离真相只有一步之遥。 您说的“select是在二次选择的时候起作用”,这个观察非…...
【动态规划】B4336 [中山市赛 2023] 永别|普及+
B4336 [中山市赛 2023] 永别 题目描述 你做了一个梦,梦里有一个字符串,这个字符串无论正着读还是倒着读都是一样的,例如: a b c b a \tt abcba abcba 就符合这个条件。 但是你醒来时不记得梦中的字符串是什么,只记得…...
