当前位置: 首页 > news >正文

Linux——IO

✅<1>主页::我的代码爱吃辣
📃<2>知识讲解:Linux——文件系统
☂️<3>开发环境:Centos7
💬<4>前言:是不是只有C/C++有文件操作呢?python,java,php,go ..... 他们都是有文件操作?他们的文件操作一样吗?他们都有文件操作,且根据语言的语法不同,文件操作也是不同的。有没有一种同意的视角,看待所有语言的文件操作呢?

目录

一.回顾C文件IO相关操作

1.C语言文件写入

2.C语言文件读取

 3.输出信息到显示器有哪些方法

二.系统文件IO

1.open

 2.write

3.close

 4.read

三.对比C库与系统调用

四.如何管理文件

1.操作系统如何管理文件 

2.进程如何管理文件 ——文件描述符

3.文件描述符的分配规则

 三.重定向

1.重定向原理

2.dup2 系统调用

 四.理解FILE


一.回顾C文件IO相关操作

1.C语言文件写入

测试代码:

#include <stdio.h>
#include <string.h>
int main()
{FILE *fp = fopen("myfile", "w");if (!fp){printf("fopen error!\n");}const char *msg = "hello Linux!\n";const char *msg2 = "hello C++!\n";int count = 5;while (count--){// 向文件中写入,// 参数1:写入的数据C++// 参数2:写入的字符个数// 参数3:写入的数据元素的个数// 参数4:写入的文件结构体指针fwrite(msg, strlen(msg), 1, fp);}int n = 5;while (n--){// 向文件中写入,// 参数1:写入的文件结构体指针// 参数2:格式化写入fprintf(fp, "[%d]:%s", n, msg2);}fclose(fp);return 0;
}

测试结果:

2.C语言文件读取

#include <stdio.h>
#include <string.h>
int main()
{FILE *fp = fopen("myfile", "r");if (!fp){printf("fopen error!\n");}char buf[1024];const char *msg = "hello bit!\n";while (1){// 注意返回值和参数,此处有坑,仔细查看man手册关于该函数的说明size_t s = fread(buf, 1, strlen(msg), fp);if (s > 0){buf[s] = 0;printf("%s", buf);}if (feof(fp)){break;}}fclose(fp);return 0;
}

 3.输出信息到显示器有哪些方法

#include <stdio.h>
#include <string.h>
int main()
{const char *msg = "hello fwrite\n";// 1.fwritefwrite(msg, strlen(msg), 1, stdout);// 2.printfprintf("hello printf\n");// 3.fprintffprintf(stdout, "hello fprintf\n");return 0;
}

C库常见IO接口:

    // 1.默认向显示器格式化打印int printf(const char *format, ...);// 2.向指定的文件中格式化输入int fprintf(FILE * stream, const char *format, ...);// 3.向指定的空间中格式化输入int sprintf(char *str, const char *format, ...);// 4.向指定的空间中格式化输入指定个数字符int snprintf(char *str, size_t size, const char *format, ...);

 总结:

  1. C默认会打开三个输入输出流,分别是stdin, stdout, stderr
  2. 仔细观察发现,这三个流的类型都是FILE*, fopen返回值类型,文件指针

二.系统文件IO

操作文件,除了上述C接口(当然,C++也有接口,其他语言也有),我们还可以采用系统接口来进行文件访问,先来直接以代码的形式,实现和上面一模一样的代码:

1.open

隆重介绍一个系统调用:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

pathname: 要打开或创建的目标文件
flags: 打开文件时,可以传入多个参数选项,用下面的一个或者多个常量进行“或”运算,,就是一种位图结构,flags参数:

  1. O_RDONLY: 只读打开
  2. O_WRONLY: 只写打开
  3. O_RDWR : 读,写打开
  4. 这三个常量,必须指定一个且只能指定一个
  5. O_CREAT : 若文件不存在,则创建它。需要使用mode选项,来指明新文件的访问权限
  6. O_APPEND: 追加写

 返回值:

  • 成功:新打开的文件描述符
  • 失败:-1

 2.write

       #include <unistd.h>ssize_t write(int fd, const void *buf, size_t count);

参数介绍:

  1. fd:要写入的文件描述符。
  2. buf:要写入的字符串。
  3. count:写入的个数。

3.close

       #include <unistd.h>int close(int fd);

 关闭指定的文件描述符的文件。

测试代码:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>int main()
{// fd:文件描述符// mufile:打开的文件名// O_WRONLY :写方式 | O_CREAT:没有该文件就创建 | O_APPEND : 追加写入int fd = open("myfile", O_WRONLY | O_CREAT | O_APPEND, 0666);if (fd == -1){perror("open");}int count = 5;char *msge = "hello C++ and Linux\n";while (count--){ssize_t n = write(fd, msge, strlen(msge));if (n == -1){perror("write:");}}close(fd);return 0;
}

测试结果:

 4.read

       #include <unistd.h>ssize_t read(int fd, void *buf, size_t count);

参数:

  1. fd:读取文件的文件描述符
  2. buf:存储读取出的数据的缓冲区
  3. count:最大读取个数

返回值:

  • 读取成功:返回读取的字节数。
  • 读取失败:返回-1.

 测试代码:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>int main()
{// fd:文件描述符// mufile:打开的文件名// ORDONLY:独方式打开int fd = open("myfile", O_RDONLY);if (fd == -1){perror("open");}char buff[1024];// fd:读取文件的文件描述符// buff:存储读取数据的缓冲区// 1024:最大读取字节数ssize_t n = read(fd, buff, 1024);if (n == -1){perror("write:");}printf(buff);close(fd);return 0;
}

 测试结果:

三.对比C库与系统调用

我们真正理解语言层面的文件操作吗?其实我们并不理解,因为这不是语言问题,这是系统问题。

是不是只有C/C++有文件操作呢?python,java,php,go ..... 他们都是有文件操作?他们的文件操作一样吗?他们都有文件操作,且根据语言的语法不同,文件操作也是不同的。有没有一种同意的视角,看待所有语言的文件操作呢?

在认识返回值之前,先来认识一下两个概念: 系统调用 和 库函数:

 上面的 fopen fclose fread fwrite 都是C标准库当中的函数,我们称之为库函数(libc)。
而, open close read write 都属于系统提供的接口,称之为系统调用接口回忆一下我们讲操作系统概念时,画的一张图:

系统调用接口和库函数的关系,一目了然。
所以,可以认为,f#系列的函数,都是对系统调用的封装,方便二次开发。

只要语言层支持了文件操作,那么语言层对下必然封装了系统调用。

四.如何管理文件

1.操作系统如何管理文件 

文件=内容+属性。

当一个文件没有被操作时,文件一般会被放在磁盘上。

当我们对一个文件进程操作的时候,文件需要被放进内存,因为冯诺依曼体系的限定!

当我们对文件进程操作的时候,文件需要被load到内存,load的是属性还是内容?至少要有属性被load。

当我们对文件进程操作的时候,文件需要被提前放进内存,操作文件的又不是我们一个,所以OS内部移动同时存在大量被打开的文件。那么操作系统如何管理这些被打开的文件呢?创建对应的结构体进行抽象,和数据机构进行组织。

每一个被打开的文件,都要在OS内部对应文件对象的struct结构体,可以将所有的struct_file结构体用某种数据结构连接起来,在OS内部,对被打开的文件进行管理,就转换成对链表的增删查改。

2.进程如何管理文件 ——文件描述符

 文件可以分为两大类,磁盘文件(没有被打开),内存文件(被打开)。

文件被打开,是指文件被以进程为代表的用户让操作系统打开的。

所以之前的文件操作,都是进程与被打开文件之间的关系。在OS的角度,就是PCB与struct_file的关系。

那么进程是如何管理自己打开的文件的呢?

open返回值:

#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>int main()
{// 打开一个文件int fd = open("testfile", O_WRONLY | O_CREAT, 0666);// 打印文件描述符printf("%d\n", fd);return 0;
}

通过对open函数的学习,我们知道了文件描述符就是一个小整数。

 这里为什么是3?我们多打开几个文件看看:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>int main()
{// 打开一个文件int fd = open("testfile", O_WRONLY | O_CREAT, 0666);int fd1 = open("testfile1", O_WRONLY | O_CREAT, 0666);int fd2 = open("testfile2", O_WRONLY | O_CREAT, 0666);int fd3 = open("testfile3", O_WRONLY | O_CREAT, 0666);// 打印文件描述符printf("%d\n", fd);printf("%d\n", fd1);printf("%d\n", fd2);printf("%d\n", fd3);return 0;
}

我们发现打印出的是连续的整数。但是没有还是从3开始的,那么会不会有0,1,2呢?

0 & 1 & 2 :

  1. Linux进程默认情况下会有3个缺省打开的文件描述符,分别是标准输入0, 标准输出1, 标准错误2.
  2. 0,1,2对应的物理设备一般是:键盘,显示器,显示器

 所以输入输出还可以采用如下方式:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
int main()
{char buf[1024];// 0:标准输入的文件描述符——键盘文件ssize_t s = read(0, buf, sizeof(buf));if (s > 0){buf[s] = 0;// 写入1号文件描述符的文件中——显示器文件// 写入2号文件描述符的文件中——显示器文件write(1, buf, strlen(buf));write(2, buf, strlen(buf));}return 0;
}

而现在知道,文件描述符就是从0开始的小整数。当我们打开文件时,操作系统在内存中要创建相应的数据结构来描述目标文件,于是就有了file结构体。表示一个已经打开的文件对象。而进程执行open系统调用,所以必须让进程和文件关联起来。每个进程都有一个指针*files, 指向一张表files_struct,该表最重要的部分就是包涵一个指针数组,每个元素都是一个指向打开文件的指针!所以,本质上,文件描述符就是该数组的下标。所以,只要在进程PCB中拿着文件描述符,就可以找到对应的文件。

3.文件描述符的分配规则

 测试代码:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>int main()
{close(0);int fd = open("testfile", O_WRONLY | O_CREAT, 0666);close(2);int fd1 = open("testfile1", O_WRONLY | O_CREAT, 0666);int fd2 = open("testfile2", O_WRONLY | O_CREAT, 0666);// 打印文件描述符printf("%d\n", fd);printf("%d\n", fd1);printf("%d\n", fd2);return 0;
}

测试结果:

 说明:

  1. 当我们关闭0,2号文件描述符,0,2文件描述符空着,新打开的文件描述符不再从3开始。
  2. fd: 0 或者 fd 2 可见,文件描述符的分配规则:在files_struct数组当中,找到当前没有被使用的最小的一个下标,作为新的文件描述符。

 三.重定向

1.重定向原理

 上述代码如果我们关闭的是1号文件描述符:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>int main()
{close(0);int fd = open("testfile", O_WRONLY | O_CREAT, 0666);// 如果关闭1号文件描述符close(1);int fd1 = open("testfile1", O_WRONLY | O_CREAT, 0666);int fd2 = open("testfile2", O_WRONLY | O_CREAT, 0666);// 打印文件描述符printf("%d\n", fd);printf("%d\n", fd1);printf("%d\n", fd2);return 0;
}

测试结果:

说明:

  1. 本应该输出到显示器的内容,却输出到了文件中。这种现象就叫做重定向。
  2. 常见的重定向有:>, >>, <,输出重定向,追加重定向,输入重定向。

重定向的本质:

说明:

原本输入到显示器的数据输入到了其他文件,仅仅通过更改struct file*fdarray[ ]对应下标的存储的指针。

2.dup2 系统调用

#include <unistd.h>int dup2(int oldfd, int newfd)

说明:

  • oldfd:需要重定向的文件描述符。
  • newfd:被重定向的文件描述符。

 测试代码:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
int main()
{int fd = open("./log", O_CREAT | O_RDWR, 0666);if (fd < 0){perror("open");return 1;}close(1);// 将fd对应的文件,重定向到1号文件描述符dup2(fd, 1);for (;;){char buf[1024] = {0};ssize_t read_size = read(0, buf, sizeof(buf) - 1);if (read_size < 0){perror("read");break;}printf("%s", buf);fflush(stdout);}return 0;
}

测试结果:

printf是C库当中的IO函数,一般往 stdout 中输出,但是stdout底层访问文件的时候,找的还是fd:1, 但此时,fd:1下标所表示内容,已经变成了./log的地址,不再是显示器文件的地址,所以,输出的任何消息都会往文件中写入,进而完成输出重定向。

 四.理解FILE

因为IO相关函数与系统调用接口对应,并且库函数封装系统调用,所以本质上,访问文件都是通过fd访问的。所以C库当中的FILE结构体内部,必定封装了fd。

测试代码:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>int main()
{int fd = open("testfile", O_CREAT | O_WRONLY, 0666);int fd1 = open("testfile1", O_CREAT | O_WRONLY, 0666);printf("%d\n", stdin->_fileno);printf("%d\n", stdout->_fileno);printf("%d\n", stderr->_fileno);printf("%d\n", fd);printf("%d\n", fd1);return 0;
}

测试结果:

看一段代码:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int main()
{const char *msg0 = "hello printf\n";const char *msg2 = "hello write\n";printf("%s", msg0);write(1, msg2, strlen(msg2));fork();return 0;
}

运行结果:

看到这里一切正常,如果我们将输出到显示器的数据,重定向到其他文件中:

 我们发现 printf 输出了2次,而 write 只输出了一次(系统调用)。为什么呢?肯定和fork有关!

  •  一般C库函数写入文件时是全缓冲的,而写入显示器是行缓冲。
  • printf fwrite 库函数会自带缓冲区(进度条例子就可以说明),当发生重定向到普通文件时,数据的缓冲方式由行缓冲变成了全缓冲。
  • 而我们放在缓冲区中的数据,就不会被立即刷新,fork之后。
  • 但是进程退出之后,会统一刷新,写入文件当中。
  • 但是fork的时候,父子数据会发生写时拷贝,所以当你父进程准备刷新的时候,子进程也就有了同样的一份数据,随即产生两份数据。
  • write 没有变化,说明没有所谓的缓冲,而是直接写入文件。

 综上:

  1. printf fwrite 等库函数会自带缓冲区,而 write 系统调用没有带缓冲区。
  2. 另外,我们这里所说的缓冲区,都是用户级缓冲区。其实为了提升整机性能,OS也会提供相关内核级缓冲区,不过不再我们讨论范围之内。
  3. 那这个缓冲区谁提供呢? printf fwrite 是库函数, write 是系统调用,库函数在系统调用的“上层”, 是对系统调用的“封装”,但是 write 没有缓冲区,而 printf fwrite 有,足以说明,该缓冲区是二次加上的,又因为是C,所以由C标准库提供。

相关文章:

Linux——IO

✅<1>主页&#xff1a;&#xff1a;我的代码爱吃辣 &#x1f4c3;<2>知识讲解&#xff1a;Linux——文件系统 ☂️<3>开发环境&#xff1a;Centos7 &#x1f4ac;<4>前言&#xff1a;是不是只有C/C有文件操作呢&#xff1f;python&#xff0c;java&…...

svn(乌龟svn)和SVN-VS2022插件(visualsvn) 下载

下载地址: https://www.visualsvn.com/visualsvn/download/...

开源日报 0824 | 构建UI组件和页面的前端工作坊

Storybook 是一个用于构建 UI 组件和页面的前端工作坊&#xff0c;支持多种主流框架&#xff0c;提供丰富的插件&#xff0c;具有可配置性强和扩展性好的特点。 storybookjs/storybook Stars: 79.9k License: MIT Storybook 是一个用于构建 UI 组件和页面的前端工作坊&#x…...

福建三明大型工程机械3D扫描工程零件三维建模逆向抄数-CASAIM中科广电

高精度3D扫描技术已经在大型工件制造领域发挥着重要作用&#xff0c;可以高精度高效率实现全尺寸三维测量&#xff0c;本期&#xff0c;我们要分享的应用是大型工程机械3D扫描案例。 铣轮是深基础施工领域内工法先进、技术复杂程度高、高附加值的地连墙设备&#xff0c;具有成…...

使用香橙派学习 Linux的守护进程

Q&#xff1a;什么是守护进程 A&#xff1a;Linux Daemon&#xff08;守护进程&#xff09;是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行 某种任务或等待处理某些发生的事件。它不需要用户输入就能运行而且提供某种服务&#xff0c;不是对整个系统就是对某个…...

数据治理-数据仓库和商务智能

数据仓库的作用 减少数据冗余&#xff0c;提高信息一致性&#xff0c;让企业能够利用数据做出更优决策的方法&#xff0c;数据仓库是企业数据管理的核心。 业务驱动因素 运营支持职能、合规需求&#xff08;历史数据响应&#xff09;和商务智能活动&#xff08;主因&#xff1…...

CH2--x86系统架构概览

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE 图中的实线箭头表示线性地址&#xff0c;虚线表示段选择器&#xff0c;虚线箭头表示物理地址 2.1.1 Global and Local Descriptor Tables 全局描述符表 (GDT) GDT是一个全局的段描述符表&#xff0c;它存储在系统内存中的一个固…...

Immutable.js API 简介

Immutable-js 这个库的实现是深拷贝还是浅拷贝&#xff1f;immutable 来源immutable.js三大特性&#xff1a; 持久化数据结构结构共享惰性操作 Immutable.js 的几种数据类型 immutable 使用 使用 npm 安装 immutable&#xff1a; 常用API介绍 MapListList.isList() 和 Map.isMa…...

HLSL 入门(一)

HLSL High Level Shader Language 高级着色语言&#xff0c;是Direct3D中用来编写Shader的语言。其语法类似于C语言。 虽然其主要作用是用来编写例如顶点着色器&#xff0c;像素着色器。但本质是对图形并行管线进行编程&#xff0c;因此也能用来编写用于计算的着色器&#xff…...

【Docker】挂载数据卷

一、Docker数据卷说明及操作 在Docker中挂载数据卷是一种将数据持久化保存的方法&#xff0c;以便容器之间或容器与主机之间共享数据。以下是如何在Docker中挂载数据卷的步骤&#xff1a; 1、创建数据卷 首先&#xff0c;您需要创建一个数据卷。可以使用以下命令创建一个数据卷…...

[技术干货]spring 和spring boot区别

Spring 和 Spring Boot 都是 Java 框架&#xff0c;用于构建企业级应用程序。Spring 是一个完整的框架&#xff0c;提供各种功能&#xff0c;包括依赖注入、事务管理、数据访问、Web 开发等。Spring Boot 是一个基于 Spring 的框架&#xff0c;旨在简化 Spring 应用程序的开发和…...

【hudi】数据湖客户端运维工具Hudi-Cli实战

数据湖客户端运维工具Hudi-Cli实战 help hudi:student_mysql_cdc_hudi_fl->help AVAILABLE COMMANDSArchived Commits Commandtrigger archival: trigger archivalshow archived commits: Read commits from archived files and show detailsshow archived commit stats: …...

RK3588 添加ROOT权限

一.ROOT简介 ROOT权限是Linux和Unix系统中的超级管理员用户帐户&#xff0c;该帐户拥有整个系统的最高权利&#xff0c;可以执行几乎所有操作。ROOT就是获取安卓系统中的最高用户权限&#xff0c;以便执行一些需要高权限才能执行的操作(包括卸载系统自带程序、刷机、备份、还原…...

【云原生】k8s-----集群调度

目录 1.k8s的list-watch机制 1.1 list-watc机制简介 1.2 根据list-watch机制&#xff0c;pod的创建流程 2.scheduler的调度策略 2.1 scheduler的调度策略简介 2.2 Scheduler预选策略的算法 2.3 Scheduler优选策略的算法 3. k8s中的标签管理及nodeSelector和nodeName的 调…...

一键集成prometheus监控微服务接口平均响应时长

一、效果展示 二、环境准备 prometheus + grafana环境 参考博文:https://blog.csdn.net/luckywuxn/article/details/129475991 三、导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter...

2023/9/13 -- C++/QT

作业&#xff1a; 1> 将之前定义的栈类和队列类都实现成模板类 栈&#xff1a; #include <iostream> #define MAX 40 using namespace std;template <typename T> class Stack{ private:T *data;int top; public:Stack();~Stack();Stack(const Stack &ot…...

mybatis mapper.xml转建表语句

从网上下载了代码&#xff0c;但是发现没有DDL建表语句&#xff0c;只能自己手动创建了&#xff0c;感觉太麻烦&#xff0c;就写了一个工具类 将所有的mapper.xml放入到一个文件夹中&#xff0c;程序会自动读取生成建表语句 依赖的jar <dependency><groupId>org.d…...

封装使用Axios进行前后端交互

Axios是一个强大的HTTP客户端&#xff0c;用于在Vue.js应用中进行前后端数据交互。本文将介绍如何在Vue中使用Axios&#xff0c;并通过一个企业应用场景来演示其实际应用。 Axios简介 公众号&#xff1a;Code程序人生&#xff0c;个人网站&#xff1a;https://creatorblog.cn A…...

SOA、分布式、微服务

SOA&#xff1a; SOA是一种软件设计架构&#xff0c;用于构建分布式系统和应用程序。它将应用程序拆分为一系列松耦合的服务&#xff0c;这些服务通过标准化的接口进行通信&#xff0c;并能够以可编程方式组合和重用。SOA的目标是提高系统的灵活性、可扩展性和可维护性。 特点&…...

json数据传输压缩以及数据切片分割分块传输多种实现方法,大数据量情况下zlib压缩以及bytes指定长度分割

json数据传输压缩以及数据切片分割分块传输多种实现方法&#xff0c;大数据量情况下zlib压缩以及bytes指定长度分割。 import sys import zlib import json import mathKAFKA_MAX_SIZE 1024 * 1024 CONTENT_MIN_MAX_SIZE KAFKA_MAX_SIZE * 0.9def split_data(data):"&q…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...