当前位置: 首页 > news >正文

SVHN数据集下载及使用方法

街景门牌号数据集(SVHN),这是一个现实世界数据集,用于开发目标检测算法。它需要最少的数据预处理过程。它与 MNIST 数据集有些类似,但是有着更多的标注数据(超过 600,000 张图像)。这些数据是从谷歌街景中的房屋门牌号中收集而来的。

大小:2.5GB

数量:6,30,420 张图像,共 10 类

The Street View House Numbers (SVHN) Dataset:下载地址

1、数据集概述

  • 10 个类别,每个数字 1 个。数字“1”的标签为 1,“9”的标签为 9,“0”的标签为 10。
  • 73257 个数字用于训练,26032 个数字用于测试,以及 531131 个额外的、难度稍低的样本,用作额外的训练数据
  • 有两种格式:
    1. 带有字符级边界框的原始图像。
    2. 以单个字符为中心的类似 MNIST 的 32×32 图像(许多图像确实在侧面包含一些干扰项)。

2、数据集两种方式

(半监督学习中采用这种方式)方式一:完整数字: train.tar.gz , test.tar.gz , extra.tar.gz 

原生的数据集1也就是官网的 Format 1 是一些原始的未经处理的彩色图片,如下图所示(不含有蓝色的边框),下载的数据集含有 PNG 的图像和 digitStruct.mat  的文件,其中包含了边框的位置信息,这个数据集每张图片上有好几个数字,适用于 OCR 相关方向。这里采用 Format2, Format2 将这些数字裁剪成32x32的大小,如图所示,并且数据是 .mat 文件。

这些是带有字符级别边界框的原始可变分辨率彩色门牌号图像,如上面的示例图像所示。(这里的蓝色边界框只是为了说明目的。边界框信息存储在digitStruct.mat中,而不是直接绘制在数据集中的图像上。)每个 tar.gz 文件包含 png 格式的原始图像,以及一个digitStruct.mat 文件,可以使用 Matlab 加载。digitStruct.mat 文件包含一个名为digitStruct的结构,其长度与原始图像的数量相同。digitStruct 中的每个元素都有以下字段:name是一个包含相应图像文件名的字符串。 bbox这是一个结构数组,包含图像中每个数字边界框的位置、大小和标签。例如:digitStruct(300).bbox(2).height给出第 300 个图像中第 2 个数字边界框的高度。 

方式二:裁剪的数字 train_32x32.mat , test_32x32.mat , extra_32x32.mat

以类似 MNIST 的格式表示的字符级基本事实。所有数字都已调整为 32 x 32 像素的固定分辨率。原始字符边界框在适当的维度上扩展成为方形窗口,因此将它们调整为 32×32 像素不会引入纵横比失真。然而,这种预处理在感兴趣数字的两侧引入了一些分散注意力的数字。加载 .mat 文件会创建 2 个变量:X是包含图像的 4 维矩阵,y是类标签的向量。要访问图像,X(:,:,:,i)给出第 i 个 32×32 RGB 图像,类标签为y(i)。

3.数据处理

数据集含有两个变量 X 代表图像, 训练集 X 的 shape 是  (32,32,3,73257) 也就是(width, height, channels, samples),  tensorflow 的张量需要 (samples, width, height, channels),所以需要转换一下,由于直接调用 cifar 10 的网络模型,数据只需要先做个归一化,所有像素除于255就 OK,另外原始数据 0 的标签是 10,这里要转化成 0,并提供 one_hot 编码。

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 19 09:55:36 2017
@author: cheers
"""import scipy.io as sio
import matplotlib.pyplot as plt
import numpy as npimage_size = 32
num_labels = 10def display_data():print 'loading Matlab data...'train = sio.loadmat('train_32x32.mat')data=train['X']label=train['y']for i in range(10):plt.subplot(2,5,i+1)plt.title(label[i][0])plt.imshow(data[...,i])plt.axis('off')plt.show()def load_data(one_hot = False):train = sio.loadmat('train_32x32.mat')test = sio.loadmat('test_32x32.mat')train_data=train['X']train_label=train['y']test_data=test['X']test_label=test['y']train_data = np.swapaxes(train_data, 0, 3)train_data = np.swapaxes(train_data, 2, 3)train_data = np.swapaxes(train_data, 1, 2)test_data = np.swapaxes(test_data, 0, 3)test_data = np.swapaxes(test_data, 2, 3)test_data = np.swapaxes(test_data, 1, 2)test_data = test_data / 255.train_data =train_data / 255.for i in range(train_label.shape[0]):if train_label[i][0] == 10:train_label[i][0] = 0for i in range(test_label.shape[0]):if test_label[i][0] == 10:test_label[i][0] = 0if one_hot:train_label = (np.arange(num_labels) == train_label[:,]).astype(np.float32)test_label = (np.arange(num_labels) == test_label[:,]).astype(np.float32)return train_data,train_label, test_data,test_labelif __name__ == '__main__':load_data(one_hot = True)display_data()

3、TFearn 训练

注意 ImagePreprocessing 对数据做了 0 均值化。网络结构也比较简单,直接调用 TFlearn 的 cifar10 例子。

from __future__ import division, print_function, absolute_importimport tflearn
from tflearn.data_utils import shuffle, to_categorical
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.estimator import regression
from tflearn.data_preprocessing import ImagePreprocessing
from tflearn.data_augmentation import ImageAugmentation# Data loading and preprocessing
import svhn_data as SVHN
X, Y, X_test, Y_test = SVHN.load_data(one_hot = True)
X, Y = shuffle(X, Y)# Real-time data preprocessing
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()# Convolutional network building
network = input_data(shape=[None, 32, 32, 3],data_preprocessing=img_prep)
network = conv_2d(network, 32, 3, activation='relu')
network = max_pool_2d(network, 2)
network = conv_2d(network, 64, 3, activation='relu')
network = conv_2d(network, 64, 3, activation='relu')
network = max_pool_2d(network, 2)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam',loss='categorical_crossentropy',learning_rate=0.001)# Train using classifier
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=15, shuffle=True, validation_set=(X_test, Y_test),show_metric=True, batch_size=96, run_id='svhn_cnn')

训练结果:

Training Step: 11452  | total loss: 0.68217 | time: 7.973s
| Adam | epoch: 015 | loss: 0.68217 - acc: 0.9329 -- iter: 72576/73257
Training Step: 11453  | total loss: 0.62980 | time: 7.983s
| Adam | epoch: 015 | loss: 0.62980 - acc: 0.9354 -- iter: 72672/73257
Training Step: 11454  | total loss: 0.58649 | time: 7.994s
| Adam | epoch: 015 | loss: 0.58649 - acc: 0.9356 -- iter: 72768/73257
Training Step: 11455  | total loss: 0.53254 | time: 8.005s
| Adam | epoch: 015 | loss: 0.53254 - acc: 0.9421 -- iter: 72864/73257
Training Step: 11456  | total loss: 0.49179 | time: 8.016s
| Adam | epoch: 015 | loss: 0.49179 - acc: 0.9416 -- iter: 72960/73257
Training Step: 11457  | total loss: 0.45679 | time: 8.027s
| Adam | epoch: 015 | loss: 0.45679 - acc: 0.9433 -- iter: 73056/73257
Training Step: 11458  | total loss: 0.42026 | time: 8.038s
| Adam | epoch: 015 | loss: 0.42026 - acc: 0.9469 -- iter: 73152/73257
Training Step: 11459  | total loss: 0.38929 | time: 8.049s
| Adam | epoch: 015 | loss: 0.38929 - acc: 0.9491 -- iter: 73248/73257
Training Step: 11460  | total loss: 0.35542 | time: 9.928s
| Adam | epoch: 015 | loss: 0.35542 - acc: 0.9542 | val_loss: 0.40315 - val_acc: 0.9085 -- iter: 73257/73257

相关文章:

SVHN数据集下载及使用方法

街景门牌号数据集(SVHN),这是一个现实世界数据集,用于开发目标检测算法。它需要最少的数据预处理过程。它与 MNIST 数据集有些类似,但是有着更多的标注数据(超过 600,000 张图像)。这些数据是从…...

产业安全公开课:2023年DDoS攻击趋势研判与企业防护新思路

2023年,全球数字化正在加速发展,网络安全是数字化发展的重要保障。与此同时,网络威胁日益加剧。其中,DDoS攻击作为网络安全的主要威胁之一,呈现出连年增长的态势,给企业业务稳定带来巨大挑战。2月21日&…...

Docker 容器命令 和安装各种镜像环境

CentOS安装Docker 1.1.卸载(可选) 如果之前安装过旧版本的Docker,可以使用下面命令卸载: yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotat…...

【数据结构】顺序表的深度剖析

🌇个人主页:平凡的小苏 📚学习格言:别人可以拷贝我的模式,但不能拷贝我不断往前的激情 🛸C语言专栏:https://blog.csdn.net/vhhhbb/category_12174730.html 🚀数据结构专栏&#xff…...

当面试官问“你的SQL能力怎么样”时,怎么回答才不会掉进应聘陷阱?

在某平台看到一个比较实际的问题,在这里分享给职场新人。 SQL已经是职场最常用的一种编程语言,所以应聘技术或非技术岗位,都可能会被问道一个问题:你的SQL能力怎么样? 对于职场新人来说(SQL高手可以无视下…...

AI作画—中国画之山水画

山水画,简称“山水”,中国画的一种,描写山川自然景色为主体的绘画。山水画在我国绘画史中占有重要的地位。 山水画形成于魏晋南北朝时期,但尚未从人物画中完全分离。隋唐时始终独立,五代、北宋时趋于成熟,…...

Java:Java与Python — 编码大战

Java和Python是目前市场上最热门的两种编程语言,因为它们具有通用性、高效性和自动化能力。两种语言都有各自的优点和缺点,但主要区别在于Java 是静态类型的,Python是动态类型的。它们有相似之处,因为它们都采用了“一切都是对象”…...

山东专精特新各地市扶持政策

青岛市奖励政策:新认定为市隐形、省“专精特新”及省瞪羚、角兽的我市企业,分别给予50万元、30万元、50万元、300万元的一次性奖励。奖励金额:省级30万济南市奖励政策:对被认定的国家专精特新 “小巨人”企业一次性给予200万元奖励…...

持续事务管理过程中的事件驱动

比较官方的定义:事件驱动是指在持续事务管理过程中,进行决策的一种策略,即跟随当前时间点上出现的事件,调动可用资源,执行相关任务,使不断出现的问题得以解决,防止事务堆积。在计算机编程、公共…...

【手把手一起学习】(三) Altium Designer 20 原理图库添加元件

1 添加元件 元件符号是元件在原理图上的表现形式,主要由边框、管脚、名称等组成,原理图库中的元件管脚(顺序,间距等)与电子元件实物的引脚严格对应,绘制原理图库时,一定参考元件规格书和芯片数据手册中的说明&#xf…...

设计模式-行为型模式:观察者模式

目录 1、简介 2、组成部分 3、优缺点 4、使用场景 5、代码实现 1、简介 观察者模式是一种软件设计模式,它定义了一种一对多的依赖关系,让多个观察者对象同时监听一个主题对象,当主题对象发生变化时,所有的观察者对象都会得到…...

Springboot 为了偷懒,我封装了一个自适配的数据单位转换工具类

前言 平时做一些统计数据,经常从数据库或者是从接口获取出来的数据,单位是跟业务需求不一致的。 比如, 我们拿出来的 分, 实际上要是元 又比如,我们拿到的数据需要 乘以100 返回给前端做 百分比展示 又比如&#xff…...

正则表达式

当我们需要对字符串进行判断的时候,使用正则表达式能大大提高编程效率。比如,当我们需要找出所有“像邮箱”的字符串(包含"" "." ".com",且顺序一致),我们需要一个某种模式的…...

java进阶Map 集合

通过之前的学习我们知道Map是一个双列集合,就是以键值对的形式进行数据存储 java进阶—集合 Map 下面有 三个子接口,HashMap , HashTable 以及 TreeMap 提醒一点:Map不是Collection下的集合,Collection是单列集合&am…...

Java 方法超详细整理,适合新手入门

目录 一、什么是方法呢? 二、方法的优点 三、带返回值方法定义 语法: 示例: 四、带返回值方法调用 语法: 示例: 五、结果示例 一、什么是方法呢? Java方法是语句的集合,它们在一起执行…...

软考学习笔记(题目知识记录)

答案为 概要设计阶段 本题涉及软件工程的概念 软件工程的任务是基于需求分析的结果建立各种设计模型,给出问题的解决方案 软件设计可以分为两个阶段: 概要设计阶段和详细设计阶段 结构化设计方法中,概要设计阶段进行软件体系结构的设计&…...

2021.3.3idea创建Maven项目

首先new - project - 找到Maven 然后按下图操作:先勾选使用骨架,再找到Maven-archetype-webapp,选中,然后next填写自己想要创建的项目名,然后选择自己的工作空间①、选择自己下载的Maven插件②、选择选择Maven里的sett…...

ASP.NET MVC | 创建应用程序

目录 首先 NO.1 No.2 App_Data 文件夹 Content 文件夹 Controllers 文件夹 Models 文件夹 Views 文件夹 Scripts 文件夹 最后 首先 一步一步的来,电脑上需要安装vs2019软件,版本高低无所谓,就是功能多少而已。 长这样的&#xff0…...

思科设备命令讲解(超基础)

♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维课堂笔记,努力不一定有收获,但一定会有收获加油!一起努力,共赴美好人生! ♥️夕阳下,是最美的绽放&#xff0…...

Qt-FFmpeg开发-保存视频流裸流(11)

Qt-FFmpeg开发-保存视频流裸流📀 文章目录Qt-FFmpeg开发-保存视频流裸流📀1、概述📸2、实现效果💽3、FFmpeg保存裸流代码流程💡4、主要代码🔍5、完整源代码📑更多精彩内容👉个人内容…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

Spring Boot + MyBatis 集成支付宝支付流程

Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例&#xff08;电脑网站支付&#xff09; 1. 添加依赖 <!…...

ffmpeg(三):处理原始数据命令

FFmpeg 可以直接处理原始音频和视频数据&#xff08;Raw PCM、YUV 等&#xff09;&#xff0c;常见场景包括&#xff1a; 将原始 YUV 图像编码为 H.264 视频将 PCM 音频编码为 AAC 或 MP3对原始音视频数据进行封装&#xff08;如封装为 MP4、TS&#xff09; 处理原始 YUV 视频…...

【Vue】scoped+组件通信+props校验

【scoped作用及原理】 【作用】 默认写在组件中style的样式会全局生效, 因此很容易造成多个组件之间的样式冲突问题 故而可以给组件加上scoped 属性&#xff0c; 令样式只作用于当前组件的标签 作用&#xff1a;防止不同vue组件样式污染 【原理】 给组件加上scoped 属性后…...