当前位置: 首页 > news >正文

深度剖析贪心算法:原理、优势与实战

概述

贪心算法是一种通过每一步的局部最优选择来寻找整体最优解的方法。在每个步骤中,贪心算法选择当前状态下的最佳选项,而不考虑未来可能的影响。尽管它不能保证一定能找到全局最优解,但贪心算法通常简单且高效,适用于许多实际问题。

核心原理

贪心算法是一种寻找全局最优解的方法,其核心原理可概括为以下步骤:

  1. 问题建模:将问题分解成一系列子问题,每个子问题都有一定的优先级。

  2. 选择策略:在每个步骤中,选择当前子问题的最佳选项,即局部最优解,而不考虑未来可能的影响。

  3. 更新状态:根据所选策略,更新问题的状态以反映已经做出的选择。

  4. 重复:反复执行步骤2和步骤3,直到达到问题的终止条件。

优势

贪心算法具有以下优势:

  • 高效性:贪心算法通常具有较低的时间复杂度,适用于大规模问题。
  • 简单性:相对于某些复杂的动态规划算法,贪心算法的实现相对简单。
  • 实用性:贪心算法适用于许多实际问题,特别是那些具有贪心选择性质的问题。

实际应用

以下是四个经典问题,以及它们的贪心算法解决方案的示例:

1. 零钱兑换问题

问题描述:给定不同面额的硬币 coins 和一个总金额 amount,编写一个函数来计算可以凑成总金额所需的最少的硬币个数。

Python 示例

def coinChange(coins, amount):coins.sort(reverse=True)count = 0for coin in coins:while amount >= coin:amount -= coincount += 1return count if amount == 0 else -1

Java 示例

public int coinChange(int[] coins, int amount) {Arrays.sort(coins);int count = 0;for (int i = coins.length - 1; i >= 0; i--) {while (amount >= coins[i]) {amount -= coins[i];count++;}}return amount == 0 ? count : -1;
}

2. 背包问题

问题描述:给定一组物品,每个物品都有自己的重量和价值,以及一个容量限制的背包。目标是找到将哪些物品放入背包,可以使得背包中的物品总价值最大。

Python 示例

def knapsack(values, weights, capacity):n = len(values)items = [(values[i], weights[i]) for i in range(n)]items.sort(key=lambda x: x[1] / x[0], reverse=True)total_value = 0for item in items:if capacity >= item[1]:total_value += item[0]capacity -= item[1]return total_value

Java 示例

public int knapsack(int[] values, int[] weights, int capacity) {int n = values.length;Item[] items = new Item[n];for (int i = 0; i < n; i++) {items[i] = new Item(values[i], weights[i]);}Arrays.sort(items, (a, b) -> Double.compare(b.valuePerWeight, a.valuePerWeight));int totalValue = 0;for (Item item : items) {if (capacity >= item.weight) {totalValue += item.value;capacity -= item.weight;}}return totalValue;
}class Item {int value;int weight;double valuePerWeight;Item(int value, int weight) {this.value = value;this.weight = weight;valuePerWeight = (double) value / weight;}
}

3.最小生成树问题

问题描述:给定一个连通的带权无向图,目标是找到一棵生成树,使得其包含所有顶点并且总权值最小。

Python 示例

class Graph:def __init__(self, vertices):self.V = verticesself.graph = []def add_edge(self, u, v, w):self.graph.append([u, v, w])def kruskal_mst(self):result = []self.graph = sorted(self.graph, key=lambda item: item[2])parent = []rank = []def find(i):if parent[i] == i:return ireturn find(parent[i])def union(i, j):i_root = find(i)j_root = find(j)if i_root != j_root:if rank[i_root] < rank[j_root]:parent[i_root] = j_rootelif rank[i_root] > rank[j_root]:parent[j_root] = i_rootelse:parent[j_root] = i_rootrank[i_root] += 1for node in range(self.V):parent.append(node)rank.append(0)i = 0e = 0while e < self.V - 1:u, v, w = self.graph[i]i += 1x = find(u)y = find(v)if x != y:e += 1result.append([u, v, w])union(x, y)minimum_cost = 0for u, v, weight in result:minimum_cost += weightprint(f"Edge ({u}-{v}) Weight: {weight}")print(f"Minimum Spanning Tree Weight: {minimum_cost}")# 创建一个带权无向图
g = Graph(4)
g.add_edge(0, 1, 10)
g.add_edge(0, 2, 6)
g.add_edge(0, 3, 5)
g.add_edge(1, 3, 15)
g.add_edge(2, 3, 4)# 执行Kruskal算法找到最小生成树
g.kruskal_mst()

Java 示例

import java.util.*;class Graph {private int V, E;private List<Edge> edges;static class Edge {int src, dest, weight;Edge(int src, int dest, int weight) {this.src = src;this.dest = dest;this.weight = weight;}}Graph(int V, int E) {this.V = V;this.E = E;edges = new ArrayList<>();}void addEdge(int src, int dest, int weight) {edges.add(new Edge(src, dest, weight));}int kruskalMST() {int result = 0;edges.sort(Comparator.comparingInt(e -> e.weight));int[] parent = new int[V];Arrays.fill(parent, -1);int edgeCount = 0;for (Edge edge : edges) {int srcParent = find(parent, edge.src);int destParent = find(parent, edge.dest);if (srcParent != destParent) {result += edge.weight;parent[srcParent] = destParent;edgeCount++;}if (edgeCount == V - 1) break;}return result;}private int find(int[] parent, int node) {if (parent[node] == -1) return node;return find(parent, parent[node]);}
}public class MinimumSpanningTree {public static void main(String[] args) {Graph graph = new Graph(4, 5);graph.addEdge(0, 1, 10);graph.addEdge(0, 2, 6);graph.addEdge(0, 3, 5);graph.addEdge(1, 3, 15);graph.addEdge(2, 3, 4);int minWeight = graph.kruskalMST();System.out.println("Minimum Spanning Tree Weight: " + minWeight);}
}

4.Huffman编码

问题描述:给定一组字符及其出现频率,目标是构建一种前缀编码,使得出现频率高的字符具有较短的编码。

Python 示例

import heapq
from collections import defaultdictclass HuffmanNode:def __init__(self, char, freq):self.char = charself.freq = freqself.left = Noneself.right = Nonedef __lt__(self, other):return self.freq < other.freqdef build_huffman_tree(chars, freq):heap = [HuffmanNode(char, freq) for char, freq in zip(chars, freq)]heapq.heapify(heap)while len(heap) > 1:left = heapq.heappop(heap)right = heapq.heappop(heap)merged = HuffmanNode('$', left.freq + right.freq)merged.left = leftmerged.right = rightheapq.heappush(heap, merged)return heap[0]def print_huffman_codes(node, code=""):if node is None:returnif node.char != '$':print(f"Character: {node.char}, Code: {code}")print_huffman_codes(node.left, code + "0")print_huffman_codes(node.right, code + "1")# 给定字符和频率数据
chars = ['a', 'b', 'c', 'd', 'e', 'f']
freq = [5, 9, 12, 13, 16, 45]# 构建Huffman编码树
root = build_huffman_tree(chars, freq)# 打印Huffman编码
print_huffman_codes(root)

Java 示例

import java.util.*;class HuffmanNode {char data;int frequency;HuffmanNode left, right;HuffmanNode(char data, int frequency) {this.data = data;this.frequency = frequency;left = right = null;}
}public class HuffmanCoding {public static void main(String[] args) {char[] chars = {'a', 'b', 'c', 'd', 'e', 'f'};int[] freq = {5, 9, 12, 13, 16, 45};HuffmanNode root = buildHuffmanTree(chars, freq);printHuffmanCodes(root, "");}public static HuffmanNode buildHuffmanTree(char[] chars, int[] freq) {PriorityQueue<HuffmanNode> queue = new PriorityQueue<>(Comparator.comparingInt(node -> node.frequency));for (int i = 0; i < chars.length; i++) {queue.add(new HuffmanNode(chars[i], freq[i]));}while (queue.size() > 1) {HuffmanNode left = queue.poll();HuffmanNode right = queue.poll();HuffmanNode newNode = new HuffmanNode('$', left.frequency + right.frequency);newNode.left = left;newNode.right = right;queue.add(newNode);}return queue.poll();}public static void printHuffmanCodes(HuffmanNode node, String code) {if (node == null) {return;}if (node.data != '$') {System.out.println("Character: " + node.data + ", Code: " + code);}printHuffmanCodes(node.left, code + "0");printHuffmanCodes(node.right, code + "1");}
}

相关文章:

深度剖析贪心算法:原理、优势与实战

概述 贪心算法是一种通过每一步的局部最优选择来寻找整体最优解的方法。在每个步骤中&#xff0c;贪心算法选择当前状态下的最佳选项&#xff0c;而不考虑未来可能的影响。尽管它不能保证一定能找到全局最优解&#xff0c;但贪心算法通常简单且高效&#xff0c;适用于许多实际…...

Docker搭建DNS服务器--use

前言 DNS服务器是(Domain Name System或者Domain Name Service)域名系统或者域名服务,域名系统为Internet上的主机分配域名地址和IP地址。 安装 2.1 实验环境 IP 系统版本 角色 192.168.40.121 Ubuntu 22.10 DNS服务器 192.168.40.122 Ubuntu 22.10 测试机器 2.2 …...

“顽固”——C语言用栈实现队列

解题图解&#xff1a; 1、 先用stack1存储push来的数据 2、每当要pop数据时&#xff0c;从stack2中取&#xff0c;如果 stack2为空&#xff0c;就先从stack1中“倒”数据到stack2。 这就是用栈实现队列的基本操作 这道题看起来比较容易&#xff0c;但是&#xff01;如果你用C语…...

linux内网渗透

一、信息收集 主机发现&#xff1a; nmap -sP 192.168.16.0/24 端口探测 masscan -p 1-65535 192.168.16.168 --rate1000 开放端口如下 nmap端口详细信息获取 nmap -sC -p 8888,3306,888,21,80 -A 192.168.16.168 -oA ddd4-port目录扫描 gobuster dir…...

还没用熟 TypeScript 社区已经开始抛弃了

根据 rich-harris-talks-sveltekit-and-whats-next-for-svelte 这篇文章的报道&#xff0c; Svelte 计划要把代码从 TS 换到 JS 了。 The team is switching the underlying code from TypeScript to JavaScript. That and the update will then allow the team to incorporate…...

2023年9月19日

2> 完成文本编辑器的保存工作 头文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QFontDialog> #include <QMainWindow> #include <QFont> #include <QMessageBox> #include <QDebug> #include <QColorDialog> #include &l…...

PowerDesigner 与 mysql 同步数据

PowerDesigner 连接上数据库 创建数据库表 table_5 选择&#xff1a; 点击确认后弹出 点击run执行 刷新数据库表&#xff0c;已创建成功 修改测试表1&#xff0c;新增一个字段 取消全选 选择数据库&#xff0c;勾选修改的表&#xff0c;如果全部勾选的话&#xff0c;就…...

[python 刷题] 271 Encode and Decode Strings

[python 刷题] 271 Encode and Decode Strings 题目&#xff1a; Design an algorithm to encode a list of strings to a string. The encoded string is then sent over the network and is decoded back to the original list of strings. Machine 1 (sender) has the func…...

[QT]day3

1.一个闹钟 widget.cpp: #include "widget.h" #include "ui_widget.h"#include <QWidget> #include <QTimerEvent> //定时器事件处理类 #include <QTime>Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {//给播…...

《PostgreSQL事务管理深入解析》

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f405;&#x1f43e;猫头虎建议程序员必备技术栈一览表&#x1f4d6;&#xff1a; &#x1f6e0;️ 全栈技术 Full Stack: &#x1f4da…...

深度分析Oracle中的NULL

【squids.cn】 全网zui低价RDS&#xff0c;免费的迁移工具DBMotion、数据库备份工具DBTwin、SQL开发工具等 关键点 特殊值NULL意味着没有数据&#xff0c;它声明了该值是未知的事实。默认情况下&#xff0c;任何类型的列和变量都可以取这个值&#xff0c;除非它们有一个NOT N…...

Python入门教学——类和对象

目录 一、面向过程和面向对象 1、面向过程 2、面向对象 二、类 三、类对象与类属性 1、类对象 2、类属性 四、类方法与静态方法 1、类方法 2、静态方法 一、面向过程和面向对象 1、面向过程 是一种以过程为中心的编程思想&#xff0c;强调事件的流程和顺序。思想&…...

【数据库系统概论】关系数据库中的关系数据结构

前言关系关系模式关系数据库关系模型的存储结构感谢 &#x1f496; 前言 上一篇文章【数据库系统概论】数据模型介绍了数据库系统中的数据模型的基本概念。其中提到了关系模型是最重要的一种数据模型。下面将介绍支持关系模型的数据库系统——关系数据库。 按照数据模型的三大…...

LabVIEW对Table中同一行数据分多次增加

LabVIEW对Table中同一行数据分多次增加 在对多个设备采集数据&#xff0c;同时需要记录到表格中。很多时候多台数据并不是同时更新&#xff0c;比如有的是在开关之前读取更新&#xff0c;有的则是在开关闭合后更新。只是用Number Indicator的方式&#xff0c;需要很多个&#…...

微信小程序实现删除功能

1. 前端 项目列表展示是使用的wx&#xff1a;for遍历 每个项目展示有3个模块 1. project-title 2. project-content 3. project-foot 全部代码如下 <t-sticky><view class"search"><t-search model:value"{{conditions.keyword}}" pl…...

整合Shiro+Jwt

整合ShiroJwt大体思路 springboot整合shiro大体上的思路&#xff1a; 1.自定义一个类Realm extends AuthorizingRealm{} 主要是对token授权和认证 重写2个方法 doGetAuthorizationInfo //授权 doGetAuthenticationInfo //认证 认证 代码中手动加上对token校验的判断2.自…...

Python 图形化界面基础篇:创建工具栏

Python 图形化界面基础篇&#xff1a;创建工具栏 引言 Tkinter 库简介步骤1&#xff1a;导入 Tkinter 模块步骤2&#xff1a;创建 Tkinter 窗口步骤3&#xff1a;创建工具栏步骤4&#xff1a;向工具栏添加工具按钮步骤5&#xff1a;处理工具按钮的点击事件步骤6&#xff1a;启动…...

基于matlab实现的卡尔曼滤波匀加速直线运动仿真

完整程序&#xff1a; clear clc %% 初始化参数 delta_t 0.1; %采样时间 T 8; %总运行时长 t 0:delta_t:T; %时间序列 N length(t); %序列的长度 x0 0; %初始位置 u0 0; %初速度 U 10; %控制量、加速度 F [1 delta_t 0 1]; %状态转移矩阵 B …...

windows Visual Studio 2022 opengl开发环境配置

1. 安装glew(GL), GLFW, glm, soil2-debug 还需要premake生成visual studio solution cmake for windows也要安装一个&#xff0c; 但是不用安装MinGW64, bug多 下载源码&#xff0c;找到xxx.sln文件用visual stidio打开solution编译代码&#xff0c;找到xxx.lib, xxx.dll文件…...

中国财政科学研究院党委书记、院长刘尚希一行莅临麒麟信安调研

为贯彻落实省委第十二届四次全会精神&#xff0c;加快推动湖南高质量发展&#xff0c;9月16日下午&#xff0c;由中国财政科学研究院党委书记、院长刘尚希&#xff0c;中国电子信息产业发展研究院总工程师秦海林&#xff0c;省委改革办副主任梁仲&#xff0c;省发展改革委党组成…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...