【图像去噪】【TGV 正则器的快速计算方法】通过FFT的总(广义)变化进行图像去噪(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
【图像去噪】【TGV 正则化器的快速计算方法】通过FFT的总(广义)变换进行图像去噪,可提供更自然的恢复图像。为了进一步提升算法的执行效率,我们通过在FFTed(快速傅里叶变换后的)域中求解多变量方程的方式进行优化。
图像去噪是数字图像处理领域中一个重要的任务,通过消除图像中的噪声,可以提高图像的质量和清晰度。TGV(总变差正则化)是一种常用的图像去噪方法,它结合了总变差和梯度正则化,能够有效地去除图像中的噪声,并保持图像细节的准确性。
为了加速TGV正则化器的计算过程,我们利用了FFT(快速傅里叶变换)的性质。FFT是一种高效的算法,可将信号从时域转换到频域,对于处理图像数据非常有效。通过将图像和正则化器在傅里叶域中进行计算,我们可以将复杂的多变量方程转化为一系列更简单的单变量方程,从而大大简化了计算过程。
具体而言,我们首先对输入图像和TGV正则化器进行FFT变换,将它们转换到频域。然后,在频域中,我们将TGV正则化器应用于傅里叶变换后的图像数据,通过解决一系列独立的单变量方程来恢复图像。最后,我们将得到的结果再次通过逆FFT变换转换回时域,得到最终的去噪图像。
这种基于FFT的快速计算方法不仅提高了TGV正则化器的执行速度,还能够更准确地恢复图像的细节和结构。通过在频域中进行运算,我们可以更充分地利用FFT的高效性能,从而在保证图像质量的同时,减少计算时间和资源消耗。
这种快速计算方法在图像去噪领域具有广泛的应用前景,可以在实际的图像处理任务中提供更高效和准确的结果。通过进一步研究和改进,我们可以不断优化这种方法,为图像去噪技术的发展做出更大贡献。
📚2 运行结果




主函数代码:
clear all;
close all;
clc;help imtgvsmooth% ADMM parameters
nite = 20; % number of iterations% balancing weights for Total Variation
alpha = 0.06; % 1st order
beta = 0.05; % 2nd order%
% load an image
%
fname = 'sanada.jpg';
I = im2double( imread( fname ) );I0 = I; % original as the reference% Additional noise
I = imnoise( I, 'gaussian', 0, 0.1^2 );%
% TGV with R,G,B independent processing
%
J = zeros( size(I) );if ( size(I,3)==3 )I_ycc = rgb2ycocg( I );
endfor c = 1:size(I,3)J(:,:,c) = imtgvsmooth( I_ycc(:,:,c), alpha, beta, nite );
endif ( size(I,3)==3 )J = ycocg2rgb( J );
end%
% PSNR
%
psnr_noisy = 10*log10( 1/mean( ( I0(:) - I(:) ).^2 ) );
psnr_tgv = 10*log10( 1/mean( ( I0(:) - J(:) ).^2 ) );%
% Dsiplaying results
%
figure(1), imshow( [I0, I, J] );
title( sprintf('From the left, original, noisy %.2fdB, TGV %.2fdB', psnr_noisy, psnr_tgv ) );
clear all;
close all;
clc;
help imtgvsmooth
% ADMM parameters
nite = 20; % number of iterations
% balancing weights for Total Variation
alpha = 0.06; % 1st order
beta = 0.05; % 2nd order
%
% load an image
%
fname = 'sanada.jpg';
I = im2double( imread( fname ) );
I0 = I; % original as the reference
% Additional noise
I = imnoise( I, 'gaussian', 0, 0.1^2 );
%
% TGV with R,G,B independent processing
%
J = zeros( size(I) );
if ( size(I,3)==3 )
I_ycc = rgb2ycocg( I );
end
for c = 1:size(I,3)
J(:,:,c) = imtgvsmooth( I_ycc(:,:,c), alpha, beta, nite );
end
if ( size(I,3)==3 )
J = ycocg2rgb( J );
end
%
% PSNR
%
psnr_noisy = 10*log10( 1/mean( ( I0(:) - I(:) ).^2 ) );
psnr_tgv = 10*log10( 1/mean( ( I0(:) - J(:) ).^2 ) );
%
% Dsiplaying results
%
figure(1), imshow( [I0, I, J] );
title( sprintf('From the left, original, noisy %.2fdB, TGV %.2fdB', psnr_noisy, psnr_tgv ) );
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张文娟,王艳红,ZHANGWen-juan,WANGYan-hong.运用TGV正则化分解模型实现天文图像去噪[J].西安工业大学学报, 2012(9).DOI:10.3969/j.issn.1673-9965.2012.09.003.
[2]陈育群,陈颖频,林凡,等.一种快速交叠组合稀疏全变分图像去噪方法[J].闽南师范大学学报:自然科学版, 2019, 32(3):6.DOI:CNKI:SUN:ZSXZ.0.2019-03-008.
[3]张文静.TGV正则化与小波变换结合的图像去噪算法研究[D].武汉理工大学,2014.DOI:10.7666/d.D639381.
🌈4 Matlab代码实现
相关文章:
【图像去噪】【TGV 正则器的快速计算方法】通过FFT的总(广义)变化进行图像去噪(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
windbg调试句柄问题
这里写自定义目录标题 winform,句柄资源不够强,程序crash句柄主程序c程序,加载的插件是c# dll,这时候如何用windbg调试dll库如果查看句柄和对象的关系!handle 怎么能知道哪个句柄是Form对话框的句柄如何查看句柄对应的类对象 winf…...
9月13-14日上课内容 第三章 ELK日志分析系统及部署实例
本章结构 ELK日志分析系统简介 ELK日志分析系统分为 Elasticsearch Logstash Kibana 日志处理步骤 1.将日志进行集中化管理 2.将日志格式化(Logstash) 并输出到Elasticsearch 3.对格式化后的数据进行索引和存储 (Elasticsearch) 4.前端数据的展示(Kibana) Elasticsearch介…...
服务器端应用的安装
前言:相信看到这篇文章的小伙伴都或多或少有一些编程基础,懂得一些linux的基本命令了吧,本篇文章将带领大家服务器如何部署一个使用django框架开发的一个网站进行云服务器端的部署。 文章使用到的的工具 Python:一种编程语言&…...
关于硬盘质量大数据分析的思考
近日,看到Backblaze分享了一遍关于硬盘运行监控数据架构的文章,觉得挺有意义的,本文就针对这方面跟大家聊聊。 作为一家在2021年在美国纳斯达克上市的云端备份公司,Backblaze一直保持着对外定期发布HDD和SSD的故障率稳定性质量报告…...
RK3568核心板分区空间不足,如何修改分区大小?
在对评估板进行开发验证时,时常会遇到根目录空间不足的情况,而在其他分区又有冗余空间,这时则需要对分区大小重新进行分配,合理化利用分区空间。 本文将基于HD-RK3568-IOT评估板主要讲解如何修改eMMC分区大小。 1. 分区表介绍…...
Linux系统怎么修改主机名
【微|信|公|众|号:厦门微思网络】 1.备份主机名文件 首先redhat修改主机名,在进行任何修改之前,请务必备份主机名文件。这样,即使出现意外情况,你也能够轻松恢复到原始状态。使用以下命令备份主机名文件࿱…...
BroadcastChannel方法跨浏览器窗口通信
1. 描述 同源 的不同浏览器窗口,Tab 页,frame 或者 iframe 下的不同文档之间可以通过 BroadcastChannel 相互通信。 2. 构造函数 通过 BroadcastChannel 类传入的参数创建实例,传入的参数将指定通道名称,在同源环境下该通道可以…...
山石网科国产化防火墙,打造全方位边界安全解决方案
互联网的快速发展促进了各行各业的信息化建设,但也随之带来了诸多网络安全风险。大部分组织机构采用统一互联网接入方案,互联网出口承担着内部用户访问互联网的统一出口和对外信息服务的入口,因此在该区域部署相匹配的安全防护手段必不可少。…...
AVL 树
文章目录 一、AVL 树的概念二、AVL 树的实现1. AVL 树的存储结构2. AVL 树的插入 一、AVL 树的概念 在 二叉搜索树 中,当我们连续插入有序的数据时,二叉搜索树可能会呈现单枝树的情况,此时二叉搜索树的查找效率为 O(N) 俄罗斯的两位数学家 …...
ggplot2做图(填坑中)
数据 df <- data.frame(x 1:10, y 1:10, f c(rep("A", 5), rep("B", 5))) 做图 1. 散点图 (scatter plot) # scatter plot scatter_plot <- function(df, metadata) {identical(rownames(df), rownames(metadata))data <- cbind(df, metada…...
Python日志处理器,同时打印到控制台和保存到文件中,并保证格式一致
使用logging模块的时候,默认是输出到控制台的,当然也可以配置输出到文件中,但是当你配置了文件后,控制台的输出就消失了,所以,需要一个策略即能保存到文件中,又能输出到控制台中。 下面是我做的…...
JavaWeb后端开发登录操作 登录功能 通用模板/SpringBoot整合
登录功能的思路 前端会传入两个参数:用户名和密码 在用户表中查询用户名,并校对相应的密码(涉及查询操作) SQL语句 select * from emp where username jingyong and password 123456; 如果有则成功,没有则登录失败.不可能为多个,因为添加了unique唯一约束,最终只会有一条 …...
The 2023 ICPC Asia Regionals Online Contest (1)(A D I J K L)
The 2023 ICPC Asia Regionals Online Contest (1)(A D I J K L) PTA | 程序设计类实验辅助教学平台 A Qualifiers Ranking Rules(模拟) 考虑先对第一场和第二场分别去重(取最好) , 归并排序后再次去重即可。 #include<bits/stdc.h> using namespace std;…...
C++ PrimerPlus 复习 第七章 函数——C++的编程模块(上)
第一章 命令编译链接文件 make文件 第二章 进入c 第三章 处理数据 第四章 复合类型 (上) 第四章 复合类型 (下) 第五章 循环和关系表达式 第六章 分支语句和逻辑运算符 第七章 函数——C的编程模块(上ÿ…...
2.求循环小数
题目 对于任意的真分数 N/M ( 0 < N < M ),均可以求出对应的小数。如果采用链表表示各个小数,对于循环节采用循环链表表示,则所有分数均可以表示为如下链表形式。 输入: N M 输出: 转换…...
zabbix监控告警邮箱提醒,钉钉提醒
一、注册网易邮箱及其配置邮箱 1、开启POP3/SMTP/IMAP 二、service端配置邮件服务 1.安装 mailx dos2unix yum install -y mailx dos2unix mailx:邮件服务 mos2unix:用于转换文本文件格式的实用工具 查看mailx版本 2.配置mailx配置文件 编辑…...
典型数据结构-栈/队列/链表、哈希查找、二叉树(BT)、线索二叉树、二叉排序树(BST树)、平衡二叉树(AVL树)、红黑树(RB树)
目录 典型数据结构列举 栈/队列/链表 树 二叉树 线索二叉树 二叉排序树 平衡二叉树(AVL树) 红黑树 其它树种和应用介绍 典型数据结构列举 栈/队列/链表 描述略。 一些基本的简单实现参考/数据结构简单实现/文件夹里面。 线性表详解ÿ…...
pyarmor 加密许可证的使用
一 pyarmor 许可证的用处 文档:5. 许可模式和许可证 — Pyarmor 8.3.6 文档 试用版本有如下的限制: 加密功能对脚本大小有限制,不能加密超过限制的大脚本。 混淆字符串功能在试用版中无法使用。 RFT 加密模式,BCC 加密模式在试…...
网络路径监控分析
不间断的连接应该是任何企业的首要任务。然而,确保网络中的源和目标之间持续、不间断的联系一直是网络通信中一个劳动密集型的过程。了解网络路径中的障碍、识别它们并迅速解决它们以维护健康、不间断的网络至关重要。 为什么要监控网络路径 维护网络运行状况是任…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

