【力扣1462】课程表(拓扑排序+bitset优化到O(n))
题目描述:
你总共需要上 numCourses 门课,课程编号依次为 0 到 numCourses-1 。你会得到一个数组 prerequisite ,其中 prerequisites[i] = [ai, bi] 表示如果你想选 bi 课程,你 必须 先选 ai 课程。
- 有的课会有直接的先修课程,比如如果想上课程
1,你必须先上课程0,那么会以[0,1]数对的形式给出先修课程数对。
先决条件也可以是 间接 的。如果课程 a 是课程 b 的先决条件,课程 b 是课程 c 的先决条件,那么课程 a 就是课程 c 的先决条件。
你也得到一个数组 queries ,其中 queries[j] = [uj, vj]。对于第 j 个查询,您应该回答课程 uj 是否是课程 vj 的先决条件。
返回一个布尔数组 answer ,其中 answer[j] 是第 j 个查询的答案。
示例 1:

输入:numCourses = 2, prerequisites = [[1,0]], queries = [[0,1],[1,0]] 输出:[false,true] 解释:课程 0 不是课程 1 的先修课程,但课程 1 是课程 0 的先修课程。
示例 2:
输入:numCourses = 3, prerequisites = [[1,2],[1,0],[2,0]], queries = [[1,0],[1,2]] 输出:[true,true]
数据范围:
2 <= numCourses <= 1000 <= prerequisites.length <= (numCourses * (numCourses - 1) / 2)prerequisites[i].length == 20 <= ai, bi <= n - 1ai != bi- 每一对
[ai, bi]都 不同 - 先修课程图中没有环。
1 <= queries.length <= 1040 <= ui, vi <= n - 1ui != vi
分析思路:
首先看样例的图,大概率是图论题,再一个题目中有很明显的先后关系,所以可以锁定这个题是一道拓扑排序题。 当然这个题范围很小 n是100,Floyd的3层循环好像也能求解(类似传递闭包),代码应该更容易实现。 不过我想用bitset实现,那样的话 数据n如果开1e4(10000) 也没事, bitset的空间复杂度是(n*n/64).
AC的过程还是有点艰难,之前写题没怎么用过vector,刚才初始化少加1 看了半天 o.O。
因为题目编号范围是0~n-1,不太习惯,怕0这个数字会未知错误, 所以我给所有的编号都进行了+1处理
f[x][y]为1 表示x->y有边; 为0 表示无边
class Solution {
public:vector<bool> checkIfPrerequisite(int numCourses, vector<vector<int>>& prerequisites, vector<vector<int>>& queries) {vector<int>d(numCourses+1);vector<vector<int>> edge(numCourses+1);for(vector<int> x:prerequisites){edge[x[0]+1].push_back(x[1]+1);//建边d[x[1]+1]++; //处理入度}queue<int>q;for(int i=1;i<=numCourses;i++){if(!d[i]){q.push(i);}}vector<int>ans;//ans里面存的是拓扑序列,注意:拓扑序列不是唯一的while(q.size()){int t=q.front();q.pop();ans.push_back(t);for(int x:edge[t]){if(--d[x]==0){q.push(x);}}}bitset<110>f[numCourses+1];for(int i=numCourses-1;i>=0;i--){int x=ans[i];for(int y:edge[x]){f[x][y]=1;f[x]|=f[y];//相当于位运算,时间复杂度是O(1)}}//处理答案vector<bool>ans1;for(auto x:queries){if(f[x[0]+1][x[1]+1])ans1.push_back(1);else ans1.push_back(0);}return ans1;}
};相关文章:
【力扣1462】课程表(拓扑排序+bitset优化到O(n))
题目描述: 你总共需要上 numCourses 门课,课程编号依次为 0 到 numCourses-1 。你会得到一个数组 prerequisite ,其中 prerequisites[i] [ai, bi] 表示如果你想选 bi 课程,你 必须 先选 ai 课程。 有的课会有直接的先修课程&am…...
【AI】机器学习——支持向量机(非线性及分析)
5. 支持向量机(线性SVM) 文章目录 5.4 非线性可分SVM5.4.1 非线性可分问题处理思路核技巧核函数特点 核函数作用于SVM 5.4.2 正定核函数由 K ( x , z ) K(x,z) K(x,z) 构造 H \mathcal{H} H 空间步骤 常用核函数 5.5 SVM参数求解算法5.6 SVM与线性模型关系 5.4 非线性可分SVM …...
2023-09-20 LeetCode每日一题(拿硬币)
2023-09-20每日一题 一、题目编号 LCP 06. 拿硬币二、题目链接 点击跳转到题目位置 三、题目描述 桌上有 n 堆力扣币,每堆的数量保存在数组 coins 中。我们每次可以选择任意一堆,拿走其中的一枚或者两枚,求拿完所有力扣币的最少次数。 示…...
Java21的新特性
Java语言特性系列 Java5的新特性Java6的新特性Java7的新特性Java8的新特性Java9的新特性Java10的新特性Java11的新特性Java12的新特性Java13的新特性Java14的新特性Java15的新特性Java16的新特性Java17的新特性Java18的新特性Java19的新特性Java20的新特性Java21的新特性Java22…...
测试-----selenuim webDriver
文章目录 1.页面导航2.元素定位3. 浏览器操作4.获取元素信息5. 鼠标的操作6. 键盘操作7. 元素等待8.下拉框9.弹出框10.滚动条11.frame处理12.验证码处理(cookie) 1.页面导航 首先是导入对应的包 :from selenium import webdriver然后实例化:driver web…...
21天学会C++:Day12----初始化列表
CSDN的uu们,大家好。这里是C入门的第十一讲。 座右铭:前路坎坷,披荆斩棘,扶摇直上。 博客主页: 姬如祎 收录专栏:C专题 目录 1. 初始化列表 1.1 引入 1.2 初始化列表 1.3 初始化列表的注意事项 1.…...
OpenAI开发系列(二):大语言模型发展史及Transformer架构详解
全文共1.8w余字,预计阅读时间约60分钟 | 满满干货,建议收藏! 一、介绍 在2020年秋季,GPT-3因其在社交媒体上病毒式的传播而引发了广泛关注。这款拥有超过1.75亿参数和每秒运行成本达到100万美元的大型语言模型(Large …...
Gson - 一个Java序列化/反序列化库
官网 GitHub - google/gson: A Java serialization/deserialization library to convert Java Objects into JSON and back 项目简介 一个Java序列化/反序列化库,用于将Java对象转换为JSON和返回JSON。 Gson is a Java library that can be used to convert Java…...
6-1 汉诺塔
汉诺(Hanoi)塔问题是一个经典的递归问题。 设有A、B、C三个塔座;开始时,在塔座A上有若干个圆盘,这些圆盘自下而上,由大到小地叠在一起。要求将塔座A上的圆盘移到塔座B上,并仍按同样顺序叠放。在…...
Linux之initd管理系统(海思、ZYNQ、复旦微)添加密码登录验证
设置root用户密码:passwd命令设置密码,即修改/etc/passwd文件 一、串口提示输入用户名密码方法 修改 /etc/inittab 方法一: 增加: ::askfirst:-/bin/login 注释: #::respawn:/sbin/getty -L ttyS000 115200 vt…...
怎么更改代理ip,代理ip如何切换使用?
我们要如何使用HTTP代理,对它进行切换使用呢? 如果你购买了青果网络的HTTP代理,可以在文档这边获取使用方法: 可以在这里调试: 也可以在这里选择key提取。 如果有的朋友们想利用利用python,每隔30秒使用API…...
【C++从0到王者】第三十三站:AVL树
文章目录 前言一、AVL 树的概念二、AVL树的实现1. AVL树的结点定义2. AVL树的插入之插入部分3. AVL树的插入之平衡因子的改变4. AVL树的插入之左旋5. AVL树的左旋抽象图6.AVL树的右旋抽象图7. AVL树的双旋8. AVL树的右左双旋9. AVL树的右左双旋的本质10. AVL树的左右双旋11. AV…...
手机机型响应式设置2
window.screen.height:屏幕高度 window.innerHeight:视口高度(去除浏览器头尾的高度) document.body.clientHeight:内容高度 vh:网页视口高度的1/100 vw:网页视口宽度的1/100 vmaxÿ…...
uni-app 之 解决u-button始终居中问题
uView中u-button始终居中问题如何解决的简单方法? 1:给该元素margin-right: 0;可以达到向右靠齐; 2:给该元素的父元素设置float: right image.png <u-button style"width: 50px; margin-left: 0;" plain"t…...
Python日期处理库:掌握时间的艺术
💂 个人网站:【工具大全】【游戏大全】【神级源码资源网】🤟 前端学习课程:👉【28个案例趣学前端】【400个JS面试题】💅 寻找学习交流、摸鱼划水的小伙伴,请点击【摸鱼学习交流群】 日期和时间在计算机编程…...
JOSEF约瑟 智能电流继电器KWJL-20/L KWLD26 零序孔径45mm 柜内导轨式安装
KWJL-20智能电流继电器 零序互感器: KWLD80 KWLD45 KWLD26 KWJL-20 一、产品概述 KWJL-20系列智能剩余电流继电器(以下简称继电器)适用于交流电压至660V或更高的TN、TT、和IT系统,频率为50Hz。通过零序电流互感器检测出超过…...
NLP技术如何为搜索引擎赋能
目录 1. NLP关键词提取与匹配在搜索引擎中的应用1. 关键词提取例子 2. 关键词匹配例子 Python实现 2. NLP语义搜索在搜索引擎中的应用1. 语义搜索的定义例子 2. 语义搜索的重要性例子 Python/PyTorch实现 3. NLP个性化搜索建议在搜索引擎中的应用1. 个性化搜索建议的定义例子 2…...
演唱会没买到票?VR直播为你弥补遗憾
听说周杰伦开了演唱会?没买到票的人是不是有着大大的遗憾呢?很多时候大型活动、演唱会都会因为场地限制而导致很多人未能有缘得见,而且加上票价成本高,“黄牛票”事件频出,我们的钱包受不住啊!!…...
myabtis的缓存级别
文章目录 MyBatis缓存的区别是什么作用范围方面有哪些差异生命周期数据进行了存储缓存的优缺点 MyBatis缓存的区别是什么 MyBatis 提供了一级缓存和二级缓存,这两者的主要区别在于其作用范围和生命周期。 一级缓存:一级缓存是 SqlSession 级别的缓存。…...
gin框架再探
Gin框架介绍及使用 | 李文周的博客 (liwenzhou.com) lesson03_gin框架初识_哔哩哔哩_bilibili 1.路由引擎 //路由引擎 rgin.Default() 2.一些http请求方法 get post put delete等等 遇到什么路径,执行什么函数 r.GET("/hello",func{做你想做的事返回…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权
摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
