当前位置: 首页 > news >正文

集成学习-树模型

可以分为三部分学习树模型:

  1. 基本树(包括 ID3、C4.5、CART).
  2. Random Forest、Adaboost、GBDT
  3. Xgboost 和 LightGBM。

基本树

选择特征的准则

ID3:信息增益max

C4.5:信息增益比max

CART:基尼指数min

优缺点

ID3

核心思想是奥卡姆剃刀(决策树小优于大)

缺点:

  • ID3 没有剪枝策略,容易过拟合;
  • 信息增益准则对可取值数目较多的特征有所偏好,类似“编号”的特征其信息增益接近于 1;
  • 只能用于处理离散分布的特征;
  • 没有考虑缺失值。

C4.5

有剪枝策略。最大的特点是克服了 ID3 对特征数目的偏重这一缺点,引入信息增益率来作为分类标准。

缺点:

  • C4.5 只能用于分类;
  • C4.5 使用的熵模型拥有大量耗时的对数运算,连续值还有排序运算;
  • C4.5 在构造树的过程中,对数值属性值需要按照其大小进行排序,从中选择一个分割点,所以只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时,程序无法运行。

CART

ID3 和 C4.5 虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但是其生成的决策树分支、规模都比较大,CART 算法的二分法可以简化决策树的规模,提高生成决策树的效率。

集成学习/决策树

常见的集成学习框架有三种&

相关文章:

集成学习-树模型

可以分为三部分学习树模型: 基本树(包括 ID3、C4.5、CART).Random Forest、Adaboost、GBDTXgboost 和 LightGBM。基本树 选择特征的准则 ID3:信息增益max C4.5:信息增益比max CART:基尼指数min 优缺点 ID3 核心思想是奥卡姆剃刀(决策树小优于大) 缺点: ID3 没…...

代码随想录算法训练营第一天(C)| 704. 二分查找 27. 移除元素

文章目录 前言一、704. 二分查找二、27. 移除元素三、34. 在排序数组中查找元素的第一个和最后一个位置总结 前言 这次是C; 代码随想录算法训练营第一天| 704. 二分查找、27. 移除元素_愚者__的博客-CSDN博客 (java) 一、704. 二分查找 的优…...

重构优化第三方查询接口返回大数据量的分页问题

# 问题描述 用户线上查询其上网流量详单数据加载慢,且有时候数据没有响应全~ 1、经排除是调用第三方数据量达10w条响应会超时,数据没正常返回 2、现有线上缓存分页也是加载慢数据不能正常展示 3、第三方接口返回类似报文jsonj&#…...

Cento7 Docker安装Zabbix,定制自定义模板

1.先安装docker环境 yum -y install yum-utils device-mapper-persistent-data lvm2#导入docker安装库 yum-config-manager \--add-repo \https://download.docker.com/linux/centos/docker-ce.repo #按指定版本安装好docker yum install docker-ce-20.10.5 docker-ce-cli-20…...

网络防御--防火墙

拓扑 Cloud 1 作为电脑与ENSP的桥梁 防火墙配置 登录防火墙 配置IP地址及安全区域 添加地址对象 配置策略 1、内网可以访问服务器 结果 2、内网可以访问公网 结果 配置NAT策略 结果...

淘宝商品详情数据采集

淘宝商品详情数据采集的方法如下: 确定采集目标:明确要采集的商品信息,如商品标题、价格、销量、评论、图片等。选择采集工具:可以选择Scrapy框架、Java的WebMagic框架等。编写爬虫程序:进入目标文件夹,输…...

mac安装virtualenv和virtualenvwrapper

1.安装(推荐用sudo安装,直接pip3安装会有坑) sudo pip3 install virtualenv sudo pip3 install virtualenvwrapper 2.查看python virtualenvwrapper.sh 位置 # 查看python默认解释器 which python3 # 查看virtualenvwrapper.sh which virtualenvwrapper.sh 3.打…...

利用PCA科学确定各个指标的权重系数

背景参考: 1、提取主成分 对样本进行PCA分析,查看不同变量贡献率,确定主要的指标。我们可以通过下列代码获取需要的所有数据: import numpy as np from sklearn.decomposition import PCA# 创建一个数据 np.random.seed(0) data = np.random.random((100,5)) y = np.ra…...

代码随想录 -- day55 --392.判断子序列 、115.不同的子序列

392.判断子序列 dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。 if (s[i - 1] t[j - 1]) t中找到了一个字符在s中也出现了if (s[i - 1] ! t[j - 1]) 相当于t要删除元素,继续匹配 if (s…...

mysql5升级到mysql8的血泪教训

核心问题1:下载中断这个包就会有问题,下载中断的话一定要重新下载 核心问题2:低版本向高版本迁移 无法整库备份 只能单库备份 1.数据备份 我这里备份了全库,所以后面数据没恢复回来,把DDL语句拆出来了单独建表 mysqldump -u root -p --al…...

Unity 开发人员转CGE(castle Game engine)城堡游戏引擎指导手册

Unity 开发人员的城堡游戏引擎概述 一、简介2. Unity相当于什么GameObject?3. 如何设计一个由多种资产、生物等组成的关卡?4. 在哪里放置特定角色的代码(例如生物、物品)?Unity 中“向 GameObject 添加 MonoBehaviour”…...

卷运维不如卷网络安全

最近发现很多从事运维的选择了辞职,重新规划自己的职业发展方向。运维工程师这个岗位在IT行业里面确实是处于最底层的,不管什么环节出现问题,基本都是运维背锅。背锅也就罢了,薪资水平也比不上别的岗位。 一般运维的薪资水平大多数…...

Digger PRO - Voxel enhanced terrains

资源链接在文末 Digger PRO​​​ 是一个简单但强大的工具,可以直接从 Unity 编辑器或游戏中创建天然洞穴和悬岩。会让你感觉自己手中握有一个体素地形,且毫无瑕疵。它实际上保持着最新、最快且可靠的 Unity 地形系统,并在你需要的地方无缝创建洞穴/悬岩峭壁网格。Digger 内…...

文字处理工具 word 2019 mac中文版改进功能

Microsoft Word 2019 是微软公司的文字处理软件,是 office 2019 套件中的一部分。它是一个功能强大、易于使用的工具,可以帮助用户创建各种类型的文档,包括信函、简历、报告、手册等。 Word 2019 提供了许多功能和改进,包括更好的…...

LeetCode 54. 螺旋矩阵

题目链接 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 题目解析 1、求出当前矩阵左上角的元素和右下角的元素。 2、根据这两个元素来确定我们需要遍历的具体位置。 3、当遍历完一圈的时候更新左上角元素和右下角元素。 细节: 当遍历最…...

每天几道Java面试题:集合(第四天)

目录 第四幕 、第一场)大厦楼下门口第二场)大门口 友情提醒 背面试题很枯燥,加入一些戏剧场景故事人物来加深记忆。PS:点击文章目录可直接跳转到文章指定位置。 第四幕 、 第一场)大厦楼下门口 【面试者老王,门卫甲…...

【论文解读】Faster sorting algorithm

一、简要介绍 基本的算法,如排序或哈希,在任何一天都被使用数万亿次。随着对计算需求的增长,这些算法的性能变得至关重要。尽管在过去的2年中已经取得了显著的进展,但进一步改进这些现有的算法路线的有效性对人类科学家和计算方法…...

latexocr安装过程中遇到的问题解决办法

环境要求:需要Python版本3.7,并安装相应依赖文件 具体的详细安装步骤可见我上次写的博文:Mathpix替代者|科研人必备公式识别插件|latexocr安装教程 ‘latexocr‘ 不是内部或外部命令,也不是可运行的程序或批处理文件的相关解决办…...

如何判断linux 文件(或lib)是由uclibc还是glibc编译出来的?

工作中使用的编译环境有2套编译器,一个是glibc,一个是uclibc。 有些项目使用的glibc编译的lib,和使用uclibc编译的工程,在一起就会出现reference的编译错误如下: 那和如何来判断一个文件是由哪个编译器编译的呢&#…...

WorkPlus | 好用、专业、安全的局域网即时通讯及协同办公平台

自国家于2022年发布的《关于加强数字政府建设的指导意见》以来,我国数字政府建设已经迈入了一个全新的里程碑,迎来了全面改革和深化升级的全新阶段。 WorkPlus作为自主可控、可信安全、专属定制的数字化平台,扮演着政务机关、政府单位以及各…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【单片机期末】单片机系统设计

主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

SpringCloudGateway 自定义局部过滤器

场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...