LLM各层参数详细分析(以LLaMA为例)
网上大多分析LLM参数的文章都比较粗粒度,对于LLM的精确部署不太友好,在这里记录一下分析LLM参数的过程。
首先看QKV。先上transformer原文
也就是说,当h(heads) = 1时,在默认情况下, W i Q W_i^Q WiQ、 W i K W_i^K WiK、 W i V W_i^V WiV都是2维方阵,方阵维度是 d m o d e l × d m o d e l d_{model} \times d_{model} dmodel×dmodel.
结合llama源码 (https://github.com/facebookresearch/llama/blob/main/llama/model.py)
class ModelArgs:dim: int = 4096n_layers: int = 32n_heads: int = 32n_kv_heads: Optional[int] = Nonevocab_size: int = -1 # defined later by tokenizermultiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2ffn_dim_multiplier: Optional[float] = Nonenorm_eps: float = 1e-5max_batch_size: int = 32max_seq_len: int = 2048
# ...class Attention(nn.Module):"""Multi-head attention module."""def __init__(self, args: ModelArgs):"""Initialize the Attention module.Args:args (ModelArgs): Model configuration parameters.Attributes:n_kv_heads (int): Number of key and value heads.n_local_heads (int): Number of local query heads.n_local_kv_heads (int): Number of local key and value heads.n_rep (int): Number of repetitions for local heads.head_dim (int): Dimension size of each attention head.wq (ColumnParallelLinear): Linear transformation for queries.wk (ColumnParallelLinear): Linear transformation for keys.wv (ColumnParallelLinear): Linear transformation for values.wo (RowParallelLinear): Linear transformation for output.cache_k (torch.Tensor): Cached keys for attention.cache_v (torch.Tensor): Cached values for attention."""super().__init__()self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_headsmodel_parallel_size = fs_init.get_model_parallel_world_size()self.n_local_heads = args.n_heads // model_parallel_sizeself.n_local_kv_heads = self.n_kv_heads // model_parallel_sizeself.n_rep = self.n_local_heads // self.n_local_kv_headsself.head_dim = args.dim // args.n_heads
计算出
self.n_kv_heads = h = 32
self.head_dim = 4096/32=128
所以 W i Q W_i^Q WiQ、 W i K W_i^K WiK、 W i V W_i^V WiV 大小都为(4096, 128). Q × K T Q×K^T Q×KT后,大小为(4096, 4096),除法scale+softmax后不变,然后 × V ×V ×V,大小恢复变为(4096, 128)。Attention不改变大小(在默认 d k = d v d_k=d_v dk=dv情况下)。
经过Cancat,分开的头又合并,大小变为(4096, 4096)方阵,经过 W O W^O WO全连接,还是(4096, 4096)方阵。
然后看Feed forward.根据源码,
class TransformerBlock(nn.Module):def __init__(self, layer_id: int, args: ModelArgs):"""Initialize a TransformerBlock.Args:layer_id (int): Identifier for the layer.args (ModelArgs): Model configuration parameters.Attributes:n_heads (int): Number of attention heads.dim (int): Dimension size of the model.head_dim (int): Dimension size of each attention head.attention (Attention): Attention module.feed_forward (FeedForward): FeedForward module.layer_id (int): Identifier for the layer.attention_norm (RMSNorm): Layer normalization for attention output.ffn_norm (RMSNorm): Layer normalization for feedforward output."""super().__init__()self.n_heads = args.n_headsself.dim = args.dimself.head_dim = args.dim // args.n_headsself.attention = Attention(args)self.feed_forward = FeedForward(dim=args.dim,hidden_dim=4 * args.dim,multiple_of=args.multiple_of,ffn_dim_multiplier=args.ffn_dim_multiplier,)self.layer_id = layer_idself.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)def forward(self,x: torch.Tensor,start_pos: int,freqs_cis: torch.Tensor,mask: Optional[torch.Tensor],):"""Perform a forward pass through the TransformerBlock.Args:x (torch.Tensor): Input tensor.start_pos (int): Starting position for attention caching.freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None.Returns:torch.Tensor: Output tensor after applying attention and feedforward layers."""h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask)out = h + self.feed_forward.forward(self.ffn_norm(h))return out
multiattention layer过后,经过加法和norm(RMS norm),进入feed_forward
全连接。全连接层第一个维度是args.dim=4096
, 第二个维度(hidden_dim
)是4 * args.dim = 4*4096=16384
(目前还有问题)
相关文章:

LLM各层参数详细分析(以LLaMA为例)
网上大多分析LLM参数的文章都比较粗粒度,对于LLM的精确部署不太友好,在这里记录一下分析LLM参数的过程。 首先看QKV。先上transformer原文 也就是说,当h(heads) 1时,在默认情况下, W i Q W_i…...
linux ansible(三)
ansible 配置详解 3.1 ansible 安装方式 ansible安装常用两种方式,yum安装和pip程序安装 3.1.1 使用 pip(python的包管理模块)安装 需要安装一个python-pip包,安装完成以后,则直接使用pip命令来安装我们的ansible包 …...

Anaconda和Pycharm详细安装 配置教程
Anaconda:是一个开源的Python发行版本,其中包含了conda、Python等180多个科学包及其依赖项。【Anaconda下载】 PyCharm:PyCharm是一种Python IDE,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具。【PyCharm下载】…...

利用Linux虚拟化技术实现资源隔离和管理
在现代计算机系统中,资源隔离和管理是非常重要的,特别是在多租户环境下。通过利用Linux虚拟化技术,我们可以实现对计算资源(如CPU、内存和存储)的隔离和管理,以提供安全、高效、稳定的计算环境。下面将详细…...

12基于MATLAB的短时傅里叶变换( STFT),连续小波变换( CWT),程序已调通,可以直接运行。
基于MATLAB的短时傅里叶变换( STFT),连续小波变换( CWT),程序已调通,可以直接运行...

k8s使用时无法ping通服务器From IP地址 icmp_seq=1 Destination Host Unreachable
天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...

两种风格的纯CSS3加载动画
<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>加载动画</title><style>.loader {w…...

Spring Cloud Eureka:服务注册与发现
💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! Spring Cloud Eureka:服务注册与发现 Spring Cloud Eureka是Spring Cloud生态系统中的一个组件,它是用于实现服务注册与发现的服务治理组件。在…...

安防监控视频云存储平台EasyNVR对接EasyNVS时,一直不上线该如何解决?
视频安防监控平台EasyNVR可支持设备通过RTSP/Onvif协议接入,并能对接入的视频流进行处理与多端分发,包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等多种格式。 近期有用户在使用安防视频平台EasyNVR对接上级平台EasyNVS时,出现了一直不上线…...

【完美解决】GitHub连接超时问题 Recv failure: Connection was reset
问题: 已经开了梯子但是在Idea中使用git(GitHub)还是连接超时Recv failure: Connection was reset。此时需要让git走代理。 解决方案: 1.对右下角网络点击右键 -> 打开网络和Internet设置 2.代理 -> 查看到地址和端口号…...

cpolar内网穿透
1、下载地址 https://www.cpolar.com/ windows系统可以在cpolar官网下载最新的安装包,然后解压默认安装即可。 2、地址配置 创建隧道映射内网端口,双击安装的软件,即可进入浏览器配置界面 http://localhost:9200/#/dashboard cpolar安装…...

go语言操作数据库
1.10 GO连接MySQL 因为Go语言没有提供任何官方数据库驱动,所以需要安装第三方函数库。由于在github上安装,所以需要安装git软件,安装过程一直点击下一步即可。安装完成后需要配置环境变量 1.10.1 安装git git软件 安装完毕后,配…...

zabbix实现钉钉报警
首先钉钉创建一个团队 自定义关键词 查看zabbix-server脚本存放的位置: [rootcontrolnode ~]# grep ^AlertScriptsPath /etc/zabbix/zabbix_server.conf AlertScriptsPath/usr/lib/zabbix/alertscripts zabbix server设置 在配置文件书写脚本目录vim /etc/za…...

基于微信小程序的语言课学习系统设计与实现(源码+lw+部署文档+讲解等)
前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 👇🏻…...

R 语言画图中英文字体解决方案
在某些时候,需要在 R 画图中添加中文,但是默认情况下,R 对中文的支持不好。这里推荐一个 showtext 的 R 包。如果需要将含有中文字体的图形保存为 pdf 文件,可以使用下面讲到的方案,最新版的showtext已经支持了 ggplot…...

Golang反射相关知识总结
1. Golang反射概述 Go语言的反射(reflection)是指在运行时动态地获取类型信息和操作对象的能力。在Go语言中,每个值都是一个接口类型,这个接口类型包含了这个值的类型信息和值的数据,因此,通过反射&#x…...

go语言初学(备忘)
1、安装 2 路径配置 C:\Program Files\Go\bin 3新建一个工程 4、下载VSCode 并安装插件 创建一个调试文件 在main目录下新建一个test.go脚本 package main import "fmt" func main() { fmt.Println("Hi 1111") fmt.Println("testasdf") } 断点…...

免费获取独立ChatGPT账户!!
GPT对于每个科研人员已经成为不可或缺的辅助工具,不同的研究领域和项目具有不同的需求。如在科研编程、绘图领域:1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。2、数据可视化…...

4.docker容器编排(docker compose 与 docker swarm)
本文目录 1.容器编排2.Docker Compose1.Docker Compose 安装2.Docker Compose 示例1.使用 docker-compose 启动 nginx2.docker compose 常用命令3.校验 docker-compose.yml 是否有错误4.创建服务,启动容器5.弹性伸缩<扩缩容> 3.Docker Swarm1.Swarm 架构图2.S…...
Linux中配置sudo用户访问权限
一、如何在 Linux 中配置 sudo 的访问权限 1.1、添加一个Linux普通用户有 sudo 权限 [root@localhost ~]# useradd test // 创建一个普通用户为:test [root@localhost ~]# [root@localhost ~]# passwd test // 设置用户test密码为:test Changing password for user te…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...