R语言绘制热图
1、初步绘图
rm(list=ls())#clear Global Environment
setwd('D:/Desktop/0000/code-main/热图')#设置工作路径#加载R包
library (pheatmap)
#读取数据
df <- read.table(file="data.txt",sep="\t",row.names = 1, header=T,check.names=FALSE)
#查看前3行
head(df)[1:5,]
####Z-score转换以保留数据的真实差异
df1 <-df[apply(df,1,var)!=0,] ##去掉方差为0的行,也就是值全都一致的行
df_zscore <-as.data.frame(t(apply(df1,1,scale)))#标准化数据,获得Z-score
colnames(df_zscore)<- colnames(df)
###初步绘图
pheatmap(df_zscore,angle_col = "45", cellwidth=25, cellheight=8, treeheight_col = 15,filename = "heatmap.png")
2、设置颜色
rm(list=ls())#clear Global Environment
setwd('D:/Desktop/0000/code-main/热图')#设置工作路径#加载R包
library (pheatmap)
#读取数据
df <- read.table(file="data.txt",sep="\t",row.names = 1, header=T,check.names=FALSE)
#查看前3行
head(df)[1:5,]
####Z-score转换以保留数据的真实差异
df1 <-df[apply(df,1,var)!=0,] ##去掉方差为0的行,也就是值全都一致的行
df_zscore <-as.data.frame(t(apply(df1,1,scale)))#标准化数据,获得Z-score
colnames(df_zscore)<- colnames(df)
#设置颜色
pheatmap(df_zscore,angle_col = "45", cellwidth=25, cellheight=8, treeheight_col = 15,color=colorRampPalette(c("#3952a2","black","#f5ea14"))(100),filename = "heatmap.png")
3、添加行注释信息
rm(list=ls())#clear Global Environment
setwd('D:/Desktop/0000/code-main/热图')#设置工作路径#加载R包
library (pheatmap)
#读取数据
df <- read.table(file="data.txt",sep="\t",row.names = 1, header=T,check.names=FALSE)
#查看前3行
head(df)[1:5,]
####Z-score转换以保留数据的真实差异
df1 <-df[apply(df,1,var)!=0,] ##去掉方差为0的行,也就是值全都一致的行
df_zscore <-as.data.frame(t(apply(df1,1,scale)))#标准化数据,获得Z-score
colnames(df_zscore)<- colnames(df)#添加行注释信息
annotation_col<- data.frame( "Treatment" = c("Saline","Saline","Saline","Cocaine","Saline","LSD","LSD","LSD","LSD","Saline","Saline","Saline","MDMA","MDMA","MDMA","Ketamine","Ketamine","Ketamine","Ketamine","Ketamine"),"Batch" = c("1","1","1","1","2","1","2","3","2","1","2","2","2","1","2","1","3","3","3","3"),"Post_treatment" = c("48 h","2 wk","2 wk","48 h","48 h","48 h","2 wk","48 h","48 h","2 wk","48 h","2 wk","2 wk","2 wk","2 wk","2 wk","48 h","48 h","48 h","48 h"),"Critical_period" = c("Closed","Closed","Closed","Closed","Closed","Closed","Closed","Closed","Closed","Open","Open","Open","Open","Open","Open","Open","Open","Open","Open","Open"))#行注释矩阵
rownames(annotation_col) = colnames(df_zscore)
colors <- list("Treatment" = c(Saline = "#000000", Cocaine = "#575757",LSD = "#e79600",MDMA="#a42422",Ketamine="#c53a8e"), "Batch" = c( "1"= "#3953a3", "2" = "#ef4a4a", "3" = "#009848"),"Post_treatment" = c("48 h"="#64838c","2 wk"="#2c3a3e"),"Critical_period" = c(Closed="#94c83d",Open="#4e2469"))
pheatmap(df_zscore,angle_col = "45", cellwidth=25, cellheight=8, treeheight_col = 15,color=colorRampPalette(c("#3952a2","black","#f5ea14"))(100),annotation_col = annotation_col,annotation_colors = colors,show_colnames = F,filename = "heatmap.png")
4、美化(通过调节细节参数以及结合AI进行美化)
rm(list=ls())#clear Global Environment
setwd('D:/Desktop/0000/code-main/热图')#设置工作路径#加载R包
library (pheatmap)
#读取数据
df <- read.table(file="data.txt",sep="\t",row.names = 1, header=T,check.names=FALSE)
#查看前3行
head(df)[1:5,]
####Z-score转换以保留数据的真实差异
df1 <-df[apply(df,1,var)!=0,] ##去掉方差为0的行,也就是值全都一致的行
df_zscore <-as.data.frame(t(apply(df1,1,scale)))#标准化数据,获得Z-score
colnames(df_zscore)<- colnames(df)#添加行注释信息
annotation_col<- data.frame( "Treatment" = c("Saline","Saline","Saline","Cocaine","Saline","LSD","LSD","LSD","LSD","Saline","Saline","Saline","MDMA","MDMA","MDMA","Ketamine","Ketamine","Ketamine","Ketamine","Ketamine"),"Batch" = c("1","1","1","1","2","1","2","3","2","1","2","2","2","1","2","1","3","3","3","3"),"Post_treatment" = c("48 h","2 wk","2 wk","48 h","48 h","48 h","2 wk","48 h","48 h","2 wk","48 h","2 wk","2 wk","2 wk","2 wk","2 wk","48 h","48 h","48 h","48 h"),"Critical_period" = c("Closed","Closed","Closed","Closed","Closed","Closed","Closed","Closed","Closed","Open","Open","Open","Open","Open","Open","Open","Open","Open","Open","Open"))#行注释矩阵
rownames(annotation_col) = colnames(df_zscore)
colors <- list("Treatment" = c(Saline = "#000000", Cocaine = "#575757",LSD = "#e79600",MDMA="#a42422",Ketamine="#c53a8e"), "Batch" = c( "1"= "#3953a3", "2" = "#ef4a4a", "3" = "#009848"),"Post_treatment" = c("48 h"="#64838c","2 wk"="#2c3a3e"),"Critical_period" = c(Closed="#94c83d",Open="#4e2469"))
###美化
pheatmap(df_zscore,angle_col = "45", cellwidth=25, cellheight=8, treeheight_col = 15,color=colorRampPalette(c("#3952a2","black","#f5ea14"))(100),annotation_col = annotation_col,annotation_colors = colors,show_colnames = F,fontsize_row=9, fontsize=12,labels_row = as.expression(lapply(rownames(df_zscore),function(x) bquote(italic(.(x))))),#行名斜体filename = "heatmap.png")
5、数据
热图.zip - 蓝奏云
相关文章:

R语言绘制热图
1、初步绘图 rm(listls())#clear Global Environment setwd(D:/Desktop/0000/code-main/热图)#设置工作路径#加载R包 library (pheatmap) #读取数据 df <- read.table(file"data.txt",sep"\t",row.names 1, headerT,check.namesFALSE) #查看前3行 hea…...

jmeter线程组 bzm - Concurrency Thread Group 阶梯式压测
简介 bzm - Concurrency Thread Group 不是JMeter的官方插件,而是一种由Blazemeter提供的高级线程组插件,它提供了更灵活的并发性能测试设置。它可以在不同的时间内并发执行不同数量的线程,模拟不同的负载场景。 插件下载地址(jme…...

计算即时订单比例-首单使用开窗函数row_number()
1 需求 即时订单和计划订单 订单配送中,如果期望配送日期和下单日期相同,称为即时订单,如果期望配送日期和下单日期不同,称为计划订单。 请从配送信息表(delivery_info)中求出每个用户的首单(用…...

flink集群与资源@k8s源码分析-集群
0 介绍 本文是flink集群与资源@k8s源码分析系列的第二篇-集群 1 场景 下面详细分析各用例 2 启动k8s集群 k8s集群支持session和application模式,job模式将会被废弃,本文分析session模式集群 Configuration作为配置容器,几乎所有的构建需要从配置类获取配置项,这里不显示…...

商城开发:商城系统的哪些功能值得企业去关注?
电子商务行业的快速发展,企业们越来越重视建设自己的在线商城。选择一个功能强大的商城系统对于企业的成功至关重要。那么,有哪些商城系统的功能值得企业去关注呢? 一、用户体验提升 ①. 响应式设计 移动设备的普及,大部分用户通…...

calibre和cpolar搭建一个私有的网络书库
Kindle中国电子书店停运不要慌,十分钟搭建自己的在线书库随时随地看小说! 文章目录 Kindle中国电子书店停运不要慌,十分钟搭建自己的在线书库随时随地看小说!1.网络书库软件下载安装2.网络书库服务器设置3.内网穿透工具设置4.公网…...
c++ nlohmann::json 中文支持
c nlohmann::json 是当前排名第一人库,但是在解析中文时会有问题 std::string to_utf8(std::wstring& wide_string) {static std::wstring_convert<std::codecvt_utf8<wchar_t>> utf8_conv;return utf8_conv.to_bytes(wide_string); }void test_nl…...

vue3 | defineExpose的使用
简介 使用<script setup>的组件是默认关闭的————即通过模板引用或者$parent链获取到的组件的公开实例,不会暴露在任何在<script setup>中声明的绑定 换句话说,如果一个子组件使用的是选项式 API 或没有使用 <script setup>&…...
PaddleSeg学习3——使用PP-LiteSeg模型对道路进行分割
使用PP-LiteSeg模型对道路进行分割 1 准备环境2 样本3 准备config文件4 模型训练5 模型预测5.1 python预测5.2 C++预测5.3 预测结果展示1 准备环境 参考上一篇:Windows PaddleSeg c++部署 2 样本 车道线分割实战的智能车数据集 #标签 背景:0, 0.05 单实线-黄...
时序数据库的关键技术点总结
总结时序数据库的关键技术点 内存 SQL解析LSM Tree(WAL)skiplist内存合并,有序落盘LRU 时序文件索引缓存 存储层 时间分区设备分区 索引文件 时间戳范围索引布隆过滤器索引brin 索引btree 索引多层索引 数据文件(tskv…...

【ROS】机器人使用Nomachine进行远程控制
官网:NoMachine - Free Remote Desktop for Everybody 支持的系统: WindowsMacLinux 树莓派其他ARM板IOSAndroid 由于网速问题,可以使用我下载好的:(8.8.1_1) 链接:https://pan.baidu.com/s/…...

Jmeter系列-定时器Timers的基本介绍(11)
简介 JMeter中的定时器(Timer)是一种重要的元件,用于模拟用户在不同时间间隔内发送请求的场景。通过使用定时器,可以模拟负载、并发和容量等不同情况下的请求发送频率。 使用定时器 可以在取样器下添加定时器,这样定…...
【华为OD机试python】求满足条件的最长子串的长度【2023 B卷|100分】
【华为OD机试】-真题 !!点这里!! 【华为OD机试】真题考点分类 !!点这里 !! 题目描述 给定一个字符串,只包含字母和数字,按要求找出字符串中的最长(连续)子串的长度, 字符串本身是其最长的子串,子串要求: 1、 只包含1个字母(a~z, A~Z),其余必须是数字; 2、 字母可以…...

iOS技术博主指南:填写苹果应用上架中的隐私政策信息
摘要:本文将详细介绍iOS技术博主在苹果应用上架过程中如何填写隐私政策信息。博主可以通过App Store Connect为应用程序提供隐私政策网址和用户隐私选项网址,并了解如何填写隐私政策文本。本文将提供步骤和注意事项,帮助博主顺利完成隐私政策…...

Spring事件机制之ApplicationEvent
博主介绍:✌全网粉丝4W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…...

【操作系统笔记】内存寻址
物理寻址 主存(内存) 计算机主存也可以称为物理内存,内存可以看成由若干个连续字节大小的单元组成的数组每个字节都有一个唯一的物理地址(Physical Address)CPU访问内存前,先拿到内存地址,然后…...

webpack自定义loader解析指定后缀名文件
案例: webpack自定义loader解析.chenjiang后缀名的文件 整体目录: chenjiangLoader.js文件代码 // 正则匹配script标签中的内容 const REG /<script>([\s\S]*)<\/script>/;module.exports function (source) {const __source source.…...

基于Kintex UltraScale系列FPGA KU060/KU115高性能PCIe数据预处理载板(5GByte/s带宽)
PCIE702是一款基于PCIE总线架构的高性能数据预处理FMC载板,板卡具有1个FMC(HPC)接口,1路PCIe x8主机接口、1个RJ45千兆以太网口、2个QSFP 40G光纤接口。板卡采用Xilinx的高性能Kintex UltraScale系列FPGA作为实时处理器࿰…...

Cesium 地球(2)-瓦片创建
Cesium 地球(2)-瓦片创建 QuadtreePrimitive代码执行4个步骤: step1: update()step2: beginFrame()step3: render()step4: endFrame() 但并不是瓦片的创建步骤。 1、创建 QuadtreeTile 基于 step3: render() step3: render()┖ selectTilesForRendering()在 selectTilesFo…...

Selenium-介绍下其他骚操作
Chrome DevTools 简介 Chrome DevTools 是一组直接内置在基于 Chromium 的浏览器(如 Chrome、Opera 和 Microsoft Edge)中的工具,用于帮助开发人员调试和研究网站。 借助 Chrome DevTools,开发人员可以更深入地访问网站…...

铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...