R语言绘制热图
1、初步绘图
rm(list=ls())#clear Global Environment
setwd('D:/Desktop/0000/code-main/热图')#设置工作路径#加载R包
library (pheatmap)
#读取数据
df <- read.table(file="data.txt",sep="\t",row.names = 1, header=T,check.names=FALSE)
#查看前3行
head(df)[1:5,]
####Z-score转换以保留数据的真实差异
df1 <-df[apply(df,1,var)!=0,] ##去掉方差为0的行,也就是值全都一致的行
df_zscore <-as.data.frame(t(apply(df1,1,scale)))#标准化数据,获得Z-score
colnames(df_zscore)<- colnames(df)
###初步绘图
pheatmap(df_zscore,angle_col = "45", cellwidth=25, cellheight=8, treeheight_col = 15,filename = "heatmap.png")

2、设置颜色
rm(list=ls())#clear Global Environment
setwd('D:/Desktop/0000/code-main/热图')#设置工作路径#加载R包
library (pheatmap)
#读取数据
df <- read.table(file="data.txt",sep="\t",row.names = 1, header=T,check.names=FALSE)
#查看前3行
head(df)[1:5,]
####Z-score转换以保留数据的真实差异
df1 <-df[apply(df,1,var)!=0,] ##去掉方差为0的行,也就是值全都一致的行
df_zscore <-as.data.frame(t(apply(df1,1,scale)))#标准化数据,获得Z-score
colnames(df_zscore)<- colnames(df)
#设置颜色
pheatmap(df_zscore,angle_col = "45", cellwidth=25, cellheight=8, treeheight_col = 15,color=colorRampPalette(c("#3952a2","black","#f5ea14"))(100),filename = "heatmap.png")

3、添加行注释信息
rm(list=ls())#clear Global Environment
setwd('D:/Desktop/0000/code-main/热图')#设置工作路径#加载R包
library (pheatmap)
#读取数据
df <- read.table(file="data.txt",sep="\t",row.names = 1, header=T,check.names=FALSE)
#查看前3行
head(df)[1:5,]
####Z-score转换以保留数据的真实差异
df1 <-df[apply(df,1,var)!=0,] ##去掉方差为0的行,也就是值全都一致的行
df_zscore <-as.data.frame(t(apply(df1,1,scale)))#标准化数据,获得Z-score
colnames(df_zscore)<- colnames(df)#添加行注释信息
annotation_col<- data.frame( "Treatment" = c("Saline","Saline","Saline","Cocaine","Saline","LSD","LSD","LSD","LSD","Saline","Saline","Saline","MDMA","MDMA","MDMA","Ketamine","Ketamine","Ketamine","Ketamine","Ketamine"),"Batch" = c("1","1","1","1","2","1","2","3","2","1","2","2","2","1","2","1","3","3","3","3"),"Post_treatment" = c("48 h","2 wk","2 wk","48 h","48 h","48 h","2 wk","48 h","48 h","2 wk","48 h","2 wk","2 wk","2 wk","2 wk","2 wk","48 h","48 h","48 h","48 h"),"Critical_period" = c("Closed","Closed","Closed","Closed","Closed","Closed","Closed","Closed","Closed","Open","Open","Open","Open","Open","Open","Open","Open","Open","Open","Open"))#行注释矩阵
rownames(annotation_col) = colnames(df_zscore)
colors <- list("Treatment" = c(Saline = "#000000", Cocaine = "#575757",LSD = "#e79600",MDMA="#a42422",Ketamine="#c53a8e"), "Batch" = c( "1"= "#3953a3", "2" = "#ef4a4a", "3" = "#009848"),"Post_treatment" = c("48 h"="#64838c","2 wk"="#2c3a3e"),"Critical_period" = c(Closed="#94c83d",Open="#4e2469"))
pheatmap(df_zscore,angle_col = "45", cellwidth=25, cellheight=8, treeheight_col = 15,color=colorRampPalette(c("#3952a2","black","#f5ea14"))(100),annotation_col = annotation_col,annotation_colors = colors,show_colnames = F,filename = "heatmap.png")

4、美化(通过调节细节参数以及结合AI进行美化)
rm(list=ls())#clear Global Environment
setwd('D:/Desktop/0000/code-main/热图')#设置工作路径#加载R包
library (pheatmap)
#读取数据
df <- read.table(file="data.txt",sep="\t",row.names = 1, header=T,check.names=FALSE)
#查看前3行
head(df)[1:5,]
####Z-score转换以保留数据的真实差异
df1 <-df[apply(df,1,var)!=0,] ##去掉方差为0的行,也就是值全都一致的行
df_zscore <-as.data.frame(t(apply(df1,1,scale)))#标准化数据,获得Z-score
colnames(df_zscore)<- colnames(df)#添加行注释信息
annotation_col<- data.frame( "Treatment" = c("Saline","Saline","Saline","Cocaine","Saline","LSD","LSD","LSD","LSD","Saline","Saline","Saline","MDMA","MDMA","MDMA","Ketamine","Ketamine","Ketamine","Ketamine","Ketamine"),"Batch" = c("1","1","1","1","2","1","2","3","2","1","2","2","2","1","2","1","3","3","3","3"),"Post_treatment" = c("48 h","2 wk","2 wk","48 h","48 h","48 h","2 wk","48 h","48 h","2 wk","48 h","2 wk","2 wk","2 wk","2 wk","2 wk","48 h","48 h","48 h","48 h"),"Critical_period" = c("Closed","Closed","Closed","Closed","Closed","Closed","Closed","Closed","Closed","Open","Open","Open","Open","Open","Open","Open","Open","Open","Open","Open"))#行注释矩阵
rownames(annotation_col) = colnames(df_zscore)
colors <- list("Treatment" = c(Saline = "#000000", Cocaine = "#575757",LSD = "#e79600",MDMA="#a42422",Ketamine="#c53a8e"), "Batch" = c( "1"= "#3953a3", "2" = "#ef4a4a", "3" = "#009848"),"Post_treatment" = c("48 h"="#64838c","2 wk"="#2c3a3e"),"Critical_period" = c(Closed="#94c83d",Open="#4e2469"))
###美化
pheatmap(df_zscore,angle_col = "45", cellwidth=25, cellheight=8, treeheight_col = 15,color=colorRampPalette(c("#3952a2","black","#f5ea14"))(100),annotation_col = annotation_col,annotation_colors = colors,show_colnames = F,fontsize_row=9, fontsize=12,labels_row = as.expression(lapply(rownames(df_zscore),function(x) bquote(italic(.(x))))),#行名斜体filename = "heatmap.png")

5、数据
热图.zip - 蓝奏云
相关文章:
R语言绘制热图
1、初步绘图 rm(listls())#clear Global Environment setwd(D:/Desktop/0000/code-main/热图)#设置工作路径#加载R包 library (pheatmap) #读取数据 df <- read.table(file"data.txt",sep"\t",row.names 1, headerT,check.namesFALSE) #查看前3行 hea…...
jmeter线程组 bzm - Concurrency Thread Group 阶梯式压测
简介 bzm - Concurrency Thread Group 不是JMeter的官方插件,而是一种由Blazemeter提供的高级线程组插件,它提供了更灵活的并发性能测试设置。它可以在不同的时间内并发执行不同数量的线程,模拟不同的负载场景。 插件下载地址(jme…...
计算即时订单比例-首单使用开窗函数row_number()
1 需求 即时订单和计划订单 订单配送中,如果期望配送日期和下单日期相同,称为即时订单,如果期望配送日期和下单日期不同,称为计划订单。 请从配送信息表(delivery_info)中求出每个用户的首单(用…...
flink集群与资源@k8s源码分析-集群
0 介绍 本文是flink集群与资源@k8s源码分析系列的第二篇-集群 1 场景 下面详细分析各用例 2 启动k8s集群 k8s集群支持session和application模式,job模式将会被废弃,本文分析session模式集群 Configuration作为配置容器,几乎所有的构建需要从配置类获取配置项,这里不显示…...
商城开发:商城系统的哪些功能值得企业去关注?
电子商务行业的快速发展,企业们越来越重视建设自己的在线商城。选择一个功能强大的商城系统对于企业的成功至关重要。那么,有哪些商城系统的功能值得企业去关注呢? 一、用户体验提升 ①. 响应式设计 移动设备的普及,大部分用户通…...
calibre和cpolar搭建一个私有的网络书库
Kindle中国电子书店停运不要慌,十分钟搭建自己的在线书库随时随地看小说! 文章目录 Kindle中国电子书店停运不要慌,十分钟搭建自己的在线书库随时随地看小说!1.网络书库软件下载安装2.网络书库服务器设置3.内网穿透工具设置4.公网…...
c++ nlohmann::json 中文支持
c nlohmann::json 是当前排名第一人库,但是在解析中文时会有问题 std::string to_utf8(std::wstring& wide_string) {static std::wstring_convert<std::codecvt_utf8<wchar_t>> utf8_conv;return utf8_conv.to_bytes(wide_string); }void test_nl…...
vue3 | defineExpose的使用
简介 使用<script setup>的组件是默认关闭的————即通过模板引用或者$parent链获取到的组件的公开实例,不会暴露在任何在<script setup>中声明的绑定 换句话说,如果一个子组件使用的是选项式 API 或没有使用 <script setup>&…...
PaddleSeg学习3——使用PP-LiteSeg模型对道路进行分割
使用PP-LiteSeg模型对道路进行分割 1 准备环境2 样本3 准备config文件4 模型训练5 模型预测5.1 python预测5.2 C++预测5.3 预测结果展示1 准备环境 参考上一篇:Windows PaddleSeg c++部署 2 样本 车道线分割实战的智能车数据集 #标签 背景:0, 0.05 单实线-黄...
时序数据库的关键技术点总结
总结时序数据库的关键技术点 内存 SQL解析LSM Tree(WAL)skiplist内存合并,有序落盘LRU 时序文件索引缓存 存储层 时间分区设备分区 索引文件 时间戳范围索引布隆过滤器索引brin 索引btree 索引多层索引 数据文件(tskv…...
【ROS】机器人使用Nomachine进行远程控制
官网:NoMachine - Free Remote Desktop for Everybody 支持的系统: WindowsMacLinux 树莓派其他ARM板IOSAndroid 由于网速问题,可以使用我下载好的:(8.8.1_1) 链接:https://pan.baidu.com/s/…...
Jmeter系列-定时器Timers的基本介绍(11)
简介 JMeter中的定时器(Timer)是一种重要的元件,用于模拟用户在不同时间间隔内发送请求的场景。通过使用定时器,可以模拟负载、并发和容量等不同情况下的请求发送频率。 使用定时器 可以在取样器下添加定时器,这样定…...
【华为OD机试python】求满足条件的最长子串的长度【2023 B卷|100分】
【华为OD机试】-真题 !!点这里!! 【华为OD机试】真题考点分类 !!点这里 !! 题目描述 给定一个字符串,只包含字母和数字,按要求找出字符串中的最长(连续)子串的长度, 字符串本身是其最长的子串,子串要求: 1、 只包含1个字母(a~z, A~Z),其余必须是数字; 2、 字母可以…...
iOS技术博主指南:填写苹果应用上架中的隐私政策信息
摘要:本文将详细介绍iOS技术博主在苹果应用上架过程中如何填写隐私政策信息。博主可以通过App Store Connect为应用程序提供隐私政策网址和用户隐私选项网址,并了解如何填写隐私政策文本。本文将提供步骤和注意事项,帮助博主顺利完成隐私政策…...
Spring事件机制之ApplicationEvent
博主介绍:✌全网粉丝4W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…...
【操作系统笔记】内存寻址
物理寻址 主存(内存) 计算机主存也可以称为物理内存,内存可以看成由若干个连续字节大小的单元组成的数组每个字节都有一个唯一的物理地址(Physical Address)CPU访问内存前,先拿到内存地址,然后…...
webpack自定义loader解析指定后缀名文件
案例: webpack自定义loader解析.chenjiang后缀名的文件 整体目录: chenjiangLoader.js文件代码 // 正则匹配script标签中的内容 const REG /<script>([\s\S]*)<\/script>/;module.exports function (source) {const __source source.…...
基于Kintex UltraScale系列FPGA KU060/KU115高性能PCIe数据预处理载板(5GByte/s带宽)
PCIE702是一款基于PCIE总线架构的高性能数据预处理FMC载板,板卡具有1个FMC(HPC)接口,1路PCIe x8主机接口、1个RJ45千兆以太网口、2个QSFP 40G光纤接口。板卡采用Xilinx的高性能Kintex UltraScale系列FPGA作为实时处理器࿰…...
Cesium 地球(2)-瓦片创建
Cesium 地球(2)-瓦片创建 QuadtreePrimitive代码执行4个步骤: step1: update()step2: beginFrame()step3: render()step4: endFrame() 但并不是瓦片的创建步骤。 1、创建 QuadtreeTile 基于 step3: render() step3: render()┖ selectTilesForRendering()在 selectTilesFo…...
Selenium-介绍下其他骚操作
Chrome DevTools 简介 Chrome DevTools 是一组直接内置在基于 Chromium 的浏览器(如 Chrome、Opera 和 Microsoft Edge)中的工具,用于帮助开发人员调试和研究网站。 借助 Chrome DevTools,开发人员可以更深入地访问网站…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)
目录 🔍 若用递归计算每一项,会发生什么? Horners Rule(霍纳法则) 第一步:我们从最原始的泰勒公式出发 第二步:从形式上重新观察展开式 🌟 第三步:引出霍纳法则&…...
