AB实验总结
互联网有线上系统,可做严格的AB实验。传统行业很多是不能做AB实验的。
匹配侧是采用严格的AB实验来进行模型迭代,而精细化定价是不能通过AB实验来评估模型好坏,经历过合成控制法、双重差分法,目前采用双重差分法来进行效果评估。
本次只讨论AB实验,其他的非AB实验方法不做详细描述,大家可初步参考之前吴百威整理的文档。登录 上海哈啰普惠科技有限公司 · 上海哈啰普惠科技有限公司 《双边市场下的实验设计》。总体来说,实验研究的方法梳理见下图:
AB实验基础
A/B实验的目的在于通过科学的实验设计、采样样本代表性、流量分割与小流量测试等方式来获得具有代表性的结论,并确信该结论可推广到全部流量。
A/B实验的基本思想其实非常简单——通过控制变量法,随机抽取一些样本进行实验组和对照组的对比实验,回收实验数据,通过统计学相关知识判断两组的优劣。而目前互联网行业的A/B实验设计基本上都是参考Google公司的经典论文:《Overlapping Experiment Infrastructure:More, Better, Faster Experimentation》。通过“层”,“域”的设计,从宝贵的线上流量中选择一部分,验证产品的某个新特性,回收数据,以此选择产品迭代方向。大胆假设,小心求证,用科学的方式让产品的每一次迭代都走在正确的道路上。
传统AB实验
将正交的参数放在不同的层中,这样就可以达到同层流量互斥,分层流量复用的目标
正交性校验:
A,B是第1层中任意两个桶,用户占比例分别为N(A),N(B),X是第2层中任意一个桶,如果满足以下条件:N(AnX)=N(A)*N(X)、N(BnX)=N(B)*N(X),则说明第1层和第2层是正交的。同样,这个也是可以从数学上进行证明的
最小样本量计算:
设置指标时要根据业务情况决定,设置为对业务有意义的提升下限。比如1个实验业务认为至少提升5个点才有意义,提升2个点没有意义,那就设置为提升5个点需要的最小样本量是多少,2个点的差异不管有没有被检验出来都不重要。
规律:提升幅度越高,需要的最小样本数量越少
顺风车业务体量,基本可以忽略这个问题
自动计算工具:Sample Size Calculator
实验的有效天数:定价实验特别要考虑
需要考虑两个因素:
(1)试验进行多少天能达到流量的最小样本量
(2)同时还要考虑到用户的行为周期和适应期
- 用户的行为周期
部分行业用行为存在周期性,例如电商用户购买行为,周末与工作日有显著差异。故实验有效天数应覆盖一个完整的用户行为周期。
- 用户学习效应
我们的一些改动会引起老用户的好奇或不满,这时候,我们可以拉长实验周期,或者仅用新用户进行实验。
还有其他置信区间、验证指标的显著的检验方法,不详细写了。
伽利略平台已经具有的能力,顺风车所有实验都是使用数分配置的指标进行,指标统一。
网络溢出效应的AB实验
用户之间存在相互影响,这个就是我们提到的社交活动,比如说分享红包,我可以在活动发起端把用户分成实验组跟对照组,实验组参与这个活动的时候,用户把活动分享出去,就会把这个活动覆盖到原来队长组的那一波人里,就会影响效果。我们可以通过社交网络关系的刻画,找到相对孤岛的一群人,就这一群人相对内部闭环,然后把这一波人切下来去做对照组,跟其他的用户进行效果对比。他们因为关联性会比较小,所以产生的联系会比较少,但是这里面用户本身可能天然存在一定的差异。
基于地理隔离
由于用户之间的相互影响,可能产生网络效应,导致AB测试用户分隔达不到预期,所以我们要尽量从地理上去区隔用户进行实验。
从地理上区隔用户,这种情况适合滴滴这种能够从地理上区隔的产品,比如北京是实验组,上海是对照组,只要两个城市样本量相近即可。
基于簇的随机化网络实验
它的思想是把网络传播路径用一个社交关系图来刻画,并通过算法把关系图划分成不相交的簇,对簇做随机化实验,从而降低网络效应带来的偏差。
双边交易市场的AB实验
双边市场是一个连接两个群体的平台,在经济学中,我们称之为供给方和需求方。由于需求方和供给方的行为存在彼此影响(即双边网络效应),导致在 AB 测试中,实验组和对照组很难满足独立性的假设,因此如何设计实验是一个比较大的挑战。
双边网络中,供给方彼此存在竞争,需求方内部存在竞争,同时需求方的变化会引起供给方的变化,影响相互交织形成复杂的竞争环境。
电商平台AB实验
没啥新意,不存在抢夺效应,简单的用户随机分流即可
广告平台AB实验
主要是参考腾讯的这个分享,目前分析下来广告平台的隔离思路在出行行业没法使用
广告场景下双边市场的实验设计
隔离广告和流量,新方法只在实验广告组和实验流量组生效
广告和流量同时隔离
广告和流量同时隔离,但是多出空白组
广告分身实验
出行平台AB实验
时间片分流
常见时间片分流
一般是城市id+时间片,滴滴的方式。
传统AB随机分流的分流对象是用户唯一ID(司机唯一ID),而时间片分流的分流对象是一段段的时间片。这种分流算法的应用在某些业务场景并不关注单个用户的选择,更关注在一个时间片内所有用户的选择。假定时间片大小为1s,那么在这1s内所有的用户都会进入同一个组。同时将城市id加入随机因子中,就可以观察不同城市在一个时间片内用户分流情况的对比,计算业务评估指标。
- 比如选定城市上海,A:实验组,B:对照组,实验周期14天=14T,每个周期T=1天,每个时间片假定是2小时,具体AB实验分组如下:可以看到AB2组在实验期间的流量占比=1:1
- 缺点:
1: 实验周期太长,上海这座城市实验期间可能还会上线别的实验,没法保证时间片分流的正交
2: 实验组和对照组上来就是50对50分的大盘流量占比,如果实验组效果不好,没法及时感知到。
时间片轮播分流
这是参考货拉拉的方式
https://analytics.zhihuiya.com/patent-view/image?limit=20&q=%E8%B4%A7%E6%8B%89%E6%8B%89%20AND%20%E6%97%B6%E9%97%B4%E7%89%87&_type=query&redirectUrl=%2Fsearch%2Finput%2Fsimple&patentId=223c95f1-38a6-42ed-97f2-7d13c75ad0a1&sort=asc&rows=20&page=1&source_type=search_result
时间片轮播,首先需要划分一个周期,比如一天(24*3600s),再指定时间片大小3600s,同时设置不同组占用的时间片的个数,那么分流SDK就会按照该所设置不同分组占用时间片的个数进行分流,保证一个时间片内所有订单进入相同组,并且在一个周期内,不同组占用时间片的比例符合预先的设定。
为了方便统计效果,最好实验周期是以天为单位,上面的做法太散了
- 针对大盘流量,A:实验组,B:对照组,实验阶段一周期2天=1T,每个周期T=4小时,需12个周期。每个时间片假定是1小时,AB2组在实验期间的流量占比=1:3
多实验并行和长期实验效果评估
多实验并行
题目1:国庆期间,产品进行了一系列组合拳,拼三单功能开启,快筛增加了国庆期间订单过滤,营销活动等,请问:产品运营一系列动作对大盘的贡献是多少?
简单解法1: 采用累乘的方式近似计算
base发完率 | 迭代实验1大盘提升3% | 迭代实验2大盘提升2% | 迭代实验3大盘提升1% | 总共3次实验 |
50% | 50%*(1+3%)=51.5% | 51.5%*(1+2%)=52.53% | 52.53%*(1+1%)=53% | 50%-》53% |
有没有更好的办法?
- 有时候,实验A和实验B,有着相互放大的作用,这时候就会 1+1 > 2
- 还有时候,实验A和实验B,本质上是做相同的事,这时候就会 1+1 < 2
多数的实验都是短期的,长期的实验该如何设计?对于长期业务,可能需要非常多的实验同时进行,不但需要对比每个小迭代的贡献,还需要对比整个模块对大盘的贡献量、部门整体对大盘的贡献量,这样就需要运用到了实验的「层域架构」。注:这个架构最早是由Google的《Overlapping Experiment Infrastructure》论文提出。
就需要一个贯穿所有活动的对照组,在AB实验系统中通俗称作「贯穿层/域」。
注:「贯穿层」在Google的论文中称为「non-overlapping domain」
根据层域架构设计顺风车大盘分流图
有个这个分流图后,我们来回答题目1:
1: 计算国庆活动1的贡献:国庆活动1的实验组 VS 国庆活动1的对照组
2: 计算国庆活动2的贡献:国庆活动2的实验组 VS 国庆活动2的对照组
3: 计算国庆活动整体贡献:业务实验域-贯穿层-国庆活动填充组 VS 大盘贯穿域-线上推全版本填充组
长期实验效果评估
题目2:这个季度算法侧推荐算法模型5次,发完率每次分别提升5%,4%,3%,2%,1%,请问:总共对业务有提升多少?
根据分流图后,我们来回答题目2:
计算上个季度整体贡献:业务实验域-贯穿层-推荐算法填充组 VS 大盘贯穿域-上个季度版本填充组
历史文档:
AB实验知识大全(流程、原理、方案设计、实验分析...)
数据分析岗 | AB实验之实验分流(三)
全网关于AA & AB Test最全最清楚的介绍
AB实验技术前沿:双边市场、用户泄漏、因果推断等话题的深入探讨
货拉拉A/B实验分流算法实践
万字干货!营销场景下的AB实验原理
广告场景下双边市场的实验设计
搭建企业级 AB/Testing 平台实践 - AIQ
如何设计一个 A/B test --来自腾讯数据分析师的分享_如何写ab test 模版_浮豹的博客-CSDN博客
产品简介
AB实验
统计学(4)|AB测试—实验流程
浅谈AB Test实验设计(二)——同时多实验并行和长期实验
电商领域A/B实验平台建设方法
数据化运营实战:滴滴的AB实验探索
相关文章:

AB实验总结
互联网有线上系统,可做严格的AB实验。传统行业很多是不能做AB实验的。 匹配侧是采用严格的AB实验来进行模型迭代,而精细化定价是不能通过AB实验来评估模型好坏,经历过合成控制法、双重差分法,目前采用双重差分法来进行效果评估。…...
sklearn包中对于分类问题,如何计算accuracy和roc_auc_score?
1. 基础条件 import numpy as np from sklearn import metricsy_true np.array([1, 7, 4, 6, 3]) y_prediction np.array([3, 7, 4, 6, 3])2. accuracy_score计算 acc metrics.accuracy_score(y_true, y_prediction)这个没问题 3. roc_auc_score计算 The binary and mul…...
python温度转换程序
1.使用pycharm运行温度转换程序,尝试将温度单位设在前面 2.参照温度转换程序,自己写一个关于货币转换、长度转换、重量转换或者面积转换的程序 循环函数 def convertemperature():temperature ""while (temperature ! "q"):temperature in…...
Vue2中10种组件通信方式和实践技巧
目录 1,props / $emit1.1,一个需求方法1方法2 1.2,v-model 和 .syncv-model.sync 2,$children / $parent3,ref4,$attrs / $listeners$attrs$listenersinheritAttrs1.1 的问题的第3种解决方法 5,…...

Flutter flutter.minSdkVersion的实际文件位置
Flutter 项目的Android相关版本号配置: flutter.minSdkVersion 的版本号配置文件实际路径: …/flutter_sdk/packages/flutter_tools/gradle/src/main/groovy/flutter.groovy Flutter版本号如下: bzbMacBook-Pro ccsmec % flutter --version …...

python生成PDF报告
前言 最近接到了一个需求-将项目下的样本信息汇总并以PDF的形式展示出来,第一次接到这种PDF的操作的功能,还是有点慌的,还好找到了reportlab这个包,可以定制化向PDF写内容! 让我们由简入深进行讲解 一、reportlab是…...

在visual studio里安装Python并创建python工程
在2009年,云计算开始发力,Python、R、Go这些天然处理批量计算的语言也迅猛发展。微软在2010年,把Python当成一个语言包插件,集成到了visual studio 2010里。在"云优先,移动优先"的战略下,于2015年…...
AIGC(生成式AI)试用 6 -- 从简单到复杂
从简单到复杂,这样的一个用例该如何设计? 之前浅尝试用,每次尝试也都是由浅至深、由简单到复杂。 一点点的“喂”给生成式AI主题,以测试和验证生成式AI的反馈。 AIGC(生成式AI)试用 1 -- 基本文本_Role…...

竞赛 基于深度学习的人脸识别系统
前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/…...
uniapp:APP开发,后台保活
前言: 在ios中,软件切换至后台、手机息屏,过了十来秒软件就会被系统挂起,APP内的任务就不能继续执行;在android中,默认情况下,软件在后台运行的时候,触发某些特定条件的情况下&…...

vue2 项目中嵌入视频
案例: 代码: <template><div class"schematicDiagramIndex"><el-container><el-aside width"20rem"> <!-- <h4 style"font-size: 18px">视频演示</h4>--><div styl…...
第二章 进程与线程 十二、进程同步与进程互斥
目录 一、进程同步 1、定义 二、进程互斥 1、定义 2、四个部分 3、原则 一、进程同步 1、定义 进程同步是指在多个进程之间协调执行顺序的一种机制,使得进程按照一定的顺序执行,以避免出现不一致的情况。常见的实现方式有信号量、管程、屏障等。…...
Linux内核链表(list)移植到任意平台
一、前言 linux内核链表在include/linux/list.h文件中,内核中实现的链表比较简洁,实用性很强,因此想把它单独移植出来使用。 内核中的代码只能使用gnuc编译器编译,stdc编译器编译是会报错的,主要是因为typeof这个宏是…...

【操作系统】聊聊什么是CPU上下文切换
对于linux来说,本身就是一个多任务运行的操作系统,运行远大于CPU核心数的程序,从用户视角来看是并发执行,而在CPU视角看其实是将不同的CPU时间片进行分割,每个程序执行一下,就切换到别的程序执行。那么这个…...
CMake教程-第 2 步 添加一个库
CMake教程-第 2 步 添加一个库 1 CMake教程介绍2 学习步骤Step 1: A Basic Starting PointStep 2: Adding a LibraryStep 3: Adding Usage Requirements for a LibraryStep 4: Adding Generator ExpressionsStep 5: Installing and TestingStep 6: Adding Support for a Testin…...
DS 顺序表--类实现(C++数据结构题)
实现顺序表的用 C 语言和类实现顺序表 属性包括:数组、实际长度、最大长度(设定为 1000 ) 操作包括:创建、插入、删除、查找 类定义参考 #include<iostream> using namespace std; #define ok 0 #define error -1 // 顺…...

0.UML
1.图 1.1类图含义 第一层显示类的名称,如果是抽象类,则就用斜体显示。第二层是类的特性,通常就是字段和属性。第三层是类的操作,通常是方法或行为。注意前面的符号, ,表示public,-,表示private,#,表示protected。 1.2接口图 与类图的区别主要是顶端有<< interface >…...

PostgreSQL设置主键为自增
1、创建自增序列 CREATE SEQUENCE table_name_id_seq START 1; 2、设置字段默认值 字段默认值中设置 nextval(table_name_id_seq) 3、常用查询 -- 查询所有序列 select * from information_schema.sequences where sequence_schema public; -- 查询自增序列的当前值 select cu…...

input修改checkbox复选框默认选中样式
问题描述: <input type"checkbox" /> input修改checkbox默认选中样式,直接设置选中后的样式不生效,需要先给复选框设置-webkit-appearance: none(取消默认样式), 再设置样式才会生效。 …...

高云FPGA系列教程(10):letter-shell移植
文章目录 letter-shell简介letter-shell源码获取letter-shell移植函数和变量应用示例 本文是高云FPGA系列教程的第10篇文章。 shell,中文是外壳的意思,就是操作系统的外壳。通过shell命令可以操作和控制操作系统,比如Linux中的Shell命令就包括…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...

Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...

Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...