SkyWalking内置参数与方法
参数
全局指标
| 指标 | 指标名称 |
|---|---|
| all_p99 | 所有服务响应时间的 p99 值 |
| all_p95 | 所有服务响应时间的 p95 值 |
| all_p90 | 所有服务响应时间的 p90 值 |
| all_p75 | 所有服务响应时间的 p75 值 |
| all_p70 | 所有服务响应时间的 p70 值 |
| all_heatmap | 所有服务响应时间的热点图 |
服务指标
| 指标 | 指标名称 |
|---|---|
| service_resp_time | 服务的平均响应时间 |
| service_sla | 服务的成功率 |
| service_p99 | 服务响应时间的 p99 值 |
| service_p95 | 服务响应时间的 p95 值 |
| service_p90 | 服务响应时间的 p90 值 |
| service_p75 | 服务响应时间的 p75 值 |
| service_p50 | 服务响应时间的 p50 值 |
服务实例指标
| 指标 | 指标名称 |
|---|---|
| service_instance_sla | 服务实例的成功率 |
| service_instance_resp_time | 服务实例的平均响应时间 |
| service_instance_cpm | 服务实例每分钟调⽤次数 |
端点指标
| 指标 | 指标名称 |
|---|---|
| endpoint_cpm | 端点每分钟调⽤次数 |
| endpoint_avg, | 端点平均响应时间 |
| endpoint_sla, | 端点成功率 |
| endpoint_p99 | 端点响应时间的 p99 值 |
| endpoint_p95 | |
| endpoint_p90 | |
| endpoint_p75 | |
| endpoint_p50 |
JVM指标
| 指标 | 指标名称 |
|---|---|
| instance_jvm_cpu | |
| instance_jvm_memory_heap | |
| instance_jvm_memory_noheap | |
| instance_jvm_memory_heap_max | |
| instance_jvm_memory_noheap_max | |
| instance_jvm_young_gc_time | |
| instance_jvm_old_gc_time |
服务关系指标
| 指标 | 指标名称 |
|---|---|
| service_relation_client_cpm | 在客户端每分钟检测到的调⽤次数 |
| service_relation_server_cpm | 在服务端每分钟检测到的调⽤次数 |
| service_relation_client_call_sla | 在客户端检测到的成功率 |
| service_relation_server_call_sla | 在服务端检测到的成功率 |
| service_relation_client_resp_time | 在客户端检测到的平均响应时间 |
| service_relation_server_resp_time | 在服务端检测到的平均响应时间 |
| service_relation_client_cpm | 在客户端每分钟检测到的调⽤次数 |
| service_relation_server_cpm | 在服务端每分钟检测到的调⽤次数 |
端点关系指标
| 指标 | 指标名称 |
|---|---|
| endpoint_relation_cpm | |
| endpoint_relation_resp_time |
其他关键指标
| 指标 | 指标名称 |
|---|---|
| CPM | 每分钟请求调⽤的次数 |
| SLA | ⽹站服务可⽤性(主要是通过请求成功与失败次数来计算),9越多代表全年服务可⽤时间越长服务更可靠,停机 时间越短 |
| CLR | (公共语⾔运⾏库)在运⾏期管理程序的执⾏:主要包含:内存管理、代码安全验证、代码执⾏、垃圾收集。CLR 有⼀项服务称为GC(Garbage Collector,垃圾收集),它能为你⾃动管理内存。GC⾃动从内存中删除程序不再访问的 对象,GC是程序员不再操⼼许多以前必须执⾏的任务,⽐如释放内存和检查内存泄漏。 |
| 百分位数 | skywalking中有P50,P90,P95这种统计⼝径,就是百分位数的概念 |
内置方法参数
以下内容都是出自SkyWalking官方git
service_resp_time = from(Service.latency).longAvg();
service_sla = from(Service.*).percent(status == true);
service_cpm = from(Service.*).cpm();
service_percentile = from(Service.latency).percentile(10); // Multiple values including p50, p75, p90, p95, p99
service_apdex = from(Service.latency).apdex(name, status);
service_mq_consume_count = from(Service.*).filter(type == RequestType.MQ).count();
service_mq_consume_latency = from((str->long)Service.tag["transmission.latency"]).filter(type == RequestType.MQ).filter(tag["transmission.latency"] != null).longAvg();// Service relation scope metrics for topology
service_relation_client_cpm = from(ServiceRelation.*).filter(detectPoint == DetectPoint.CLIENT).cpm();
service_relation_server_cpm = from(ServiceRelation.*).filter(detectPoint == DetectPoint.SERVER).cpm();
service_relation_client_call_sla = from(ServiceRelation.*).filter(detectPoint == DetectPoint.CLIENT).percent(status == true);
service_relation_server_call_sla = from(ServiceRelation.*).filter(detectPoint == DetectPoint.SERVER).percent(status == true);
service_relation_client_resp_time = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).longAvg();
service_relation_server_resp_time = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.SERVER).longAvg();
service_relation_client_percentile = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).percentile(10); // Multiple values including p50, p75, p90, p95, p99
service_relation_server_percentile = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.SERVER).percentile(10); // Multiple values including p50, p75, p90, p95, p99// Service Instance relation scope metrics for topology
service_instance_relation_client_cpm = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.CLIENT).cpm();
service_instance_relation_server_cpm = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.SERVER).cpm();
service_instance_relation_client_call_sla = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.CLIENT).percent(status == true);
service_instance_relation_server_call_sla = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.SERVER).percent(status == true);
service_instance_relation_client_resp_time = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).longAvg();
service_instance_relation_server_resp_time = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.SERVER).longAvg();
service_instance_relation_client_percentile = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).percentile(10); // Multiple values including p50, p75, p90, p95, p99
service_instance_relation_server_percentile = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.SERVER).percentile(10); // Multiple values including p50, p75, p90, p95, p99// Service Instance Scope metrics
service_instance_sla = from(ServiceInstance.*).percent(status == true);
service_instance_resp_time = from(ServiceInstance.latency).longAvg();
service_instance_cpm = from(ServiceInstance.*).cpm();// Endpoint scope metrics
endpoint_cpm = from(Endpoint.*).cpm();
endpoint_resp_time = from(Endpoint.latency).longAvg();
endpoint_sla = from(Endpoint.*).percent(status == true);
endpoint_percentile = from(Endpoint.latency).percentile(10); // Multiple values including p50, p75, p90, p95, p99
endpoint_mq_consume_latency = from((str->long)Endpoint.tag["transmission.latency"]).filter(type == RequestType.MQ).filter(tag["transmission.latency"] != null).longAvg();// Endpoint relation scope metrics
endpoint_relation_cpm = from(EndpointRelation.*).filter(detectPoint == DetectPoint.SERVER).cpm();
endpoint_relation_resp_time = from(EndpointRelation.rpcLatency).filter(detectPoint == DetectPoint.SERVER).longAvg();
endpoint_relation_sla = from(EndpointRelation.*).filter(detectPoint == DetectPoint.SERVER).percent(status == true);
endpoint_relation_percentile = from(EndpointRelation.rpcLatency).filter(detectPoint == DetectPoint.SERVER).percentile(10); // Multiple values including p50, p75, p90, p95, p99database_access_resp_time = from(DatabaseAccess.latency).longAvg();
database_access_sla = from(DatabaseAccess.*).percent(status == true);
database_access_cpm = from(DatabaseAccess.*).cpm();
database_access_percentile = from(DatabaseAccess.latency).percentile(10);cache_read_resp_time = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Read).longAvg();
cache_read_sla = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Read).percent(status == true);
cache_read_cpm = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Read).cpm();
cache_read_percentile = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Read).percentile(10);cache_write_resp_time = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Write).longAvg();
cache_write_sla = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Write).percent(status == true);
cache_write_cpm = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Write).cpm();
cache_write_percentile = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Write).percentile(10);cache_access_resp_time = from(CacheAccess.latency).longAvg();
cache_access_sla = from(CacheAccess.*).percent(status == true);
cache_access_cpm = from(CacheAccess.*).cpm();
cache_access_percentile = from(CacheAccess.latency).percentile(10);mq_service_consume_cpm = from(MQAccess.*).filter(operation == MQOperation.Consume).cpm();
mq_service_consume_sla = from(MQAccess.*).filter(operation == MQOperation.Consume).percent(status == true);
mq_service_consume_latency = from(MQAccess.transmissionLatency).filter(operation == MQOperation.Consume).longAvg();
mq_service_consume_percentile = from(MQAccess.transmissionLatency).filter(operation == MQOperation.Consume).percentile(10);
mq_service_produce_cpm = from(MQAccess.*).filter(operation == MQOperation.Produce).cpm();
mq_service_produce_sla = from(MQAccess.*).filter(operation == MQOperation.Produce).percent(status == true);mq_endpoint_consume_cpm = from(MQEndpointAccess.*).filter(operation == MQOperation.Consume).cpm();
mq_endpoint_consume_latency = from(MQEndpointAccess.transmissionLatency).filter(operation == MQOperation.Consume).longAvg();
mq_endpoint_consume_percentile = from(MQEndpointAccess.transmissionLatency).filter(operation == MQOperation.Consume).percentile(10);
mq_endpoint_consume_sla = from(MQEndpointAccess.*).filter(operation == MQOperation.Consume).percent(status == true);
mq_endpoint_produce_cpm = from(MQEndpointAccess.*).filter(operation == MQOperation.Produce).cpm();
mq_endpoint_produce_sla = from(MQEndpointAccess.*).filter(operation == MQOperation.Produce).percent(status == true);
titles
{// General Servicegeneral_service: "常规服务",general_service_desc: "通过从SkyWalking代理收集的遥测数据来观察服务和相对直接的依赖关系。",general_service_services: "服务",general_service_services_desc: "通过SkyWalking Agent收集的遥测数据观察服务。",general_service_virtual_database: "虚拟数据库",general_service_virtual_database_desc: "观察语言代理通过各种插件推测的虚拟数据库。",general_service_virtual_cache: "虚拟缓存",general_service_virtual_cache_desc: "观察语言代理通过各种插件推测的虚拟缓存服务器。",general_service_virtual_mq: "虚拟消息队列",general_service_virtual_mq_desc: "观察语言代理通过各种插件推测的虚拟消息队列服务器。",// Service Meshservice_mesh: "服务网格",service_mesh_desc: "服务网格(Istio)通过分布式或微服务架构解决了开发人员和运营商面临的挑战。",service_mesh_service: "服务",service_mesh_service_desc: "通过从Envoy访问日志服务(ALS)收集的遥测数据观察服务网格。",service_mesh_control_plane: "控制平面",service_mesh_control_plane_desc: "通过Istio的自我监控指标提供对其行为的监控。",service_mesh_data_plane: "数据平面",service_mesh_data_plane_desc: "通过Envoy Metrics Service观察Envoy Proxy。",// Functionsfunctions: "Functions",functions_desc:"FaaS(功能即服务)是一种云计算服务,允许您在没有通常与构建和启动微服务应用程序相关的复杂基础设施的情况下执行代码以响应事件。",functions_openfunction: "OpenFunction",functions_openfunction_desc: "OpenFunction作为一个FaaS平台,通过SkyWalking集成提供开箱即用的可观察性。",// Kuberneteskubernetes: "Kubernetes",kubernetes_desc: "Kubernetes是一个开源的容器编排系统,用于自动化软件部署、扩展和管理。",kubernetes_cluster: "集群",kubernetes_cluster_desc: "提供对K8S集群的状态和资源的监控。",kubernetes_service: "服务",kubernetes_service_desc: "从Kubernetes中观察服务状态和资源。",// Infrastructureinfrastructure: "基础设施",infrastructure_desc: "操作系统是整个IT系统的基础设施。它的可观察性为所有分布式和现代复杂系统的运行提供了基础。",infrastructure_linux: "Linux",infrastructure_linux_desc: "提供Linux操作系统(OS)监控。",infrastructure_windows: "Windows",infrastructure_windows_desc: "提供Windows操作系统(OS)监控。",// AWS Cloudaws_cloud: "AWS云服务",aws_cloud_desc: "亚马逊网络服务(AWS)提供可靠、可扩展且价格低廉的云计算服务。",aws_cloud_eks: "EKS",aws_cloud_eks_desc: "通过AWS Container Insights Receiver提供AWS Cloud EKS监控。",aws_cloud_s3: "S3",aws_cloud_s3_desc: "通过AWS FireHose Receiver提供AWS Cloud S3监控",aws_cloud_dynamodb: "DynamoDB",aws_cloud_dynamodb_desc: "通过AWS FireHose Receiver提供DynamoDB监控。",aws_cloud_api_gateway: "API Gateway",aws_cloud_api_gateway_desc: "通过AWS FireHose Receiver提供AWS Cloud API网关监控。",// Browserbrowser: "Browser",browser_desc: "通过Apache SkyWalking Client JS提供Web应用程序、版本和页面的浏览器端监控。",// Gatewaygateway: "网关",gateway_desc: "API网关是位于客户端和后端服务集合之间的API管理工具。",gateway_apisix: "APISIX",gateway_apisix_desc: "通过OpenTelemetry的Prometheus接收器提供APISIX监控。",gateway_aws_api_gateway: "AWS API Gateway",gateway_aws_api_gateway_desc: "通过AWS FireHose Receiver提供AWS Cloud API网关监控。",// Databasedatabase: "数据库",database_desc: "数据库是结构化信息或数据的有组织的集合,通常以电子方式存储在计算机系统中。",database_mysql_mariadb: "MySQL/MariaDB",database_mysql_mariadb_desc: "通过OpenTelemetry的Prometheus接收器提供MySQL和MariaDB服务器监控。",database_postgresql: "PostgreSQL",database_postgresql_desc: "通过OpenTelemetry的Prometheus接收器提供PostgreSQL监控。",database_dynamodb: "DynamoDB",database_dynamodb_desc: "通过AWS FireHose Receiver提供DynamoDB监控。",database_redis: "Redis",database_redis_desc: "通过OpenTelemetry的Prometheus接收器提供Redis监控。",database_elasticsearch: "Elasticsearch",database_elasticsearch_desc: "通过OpenTelemetry的Prometheus接收器提供Elasticsearch服务器监控。",database_mongodb: "MongoDB",database_mongodb_desc: "通过OpenTelemetry的Prometheus接收器提供MongoDB监控。",// Message Queuemq: "消息队列",mq_desc: "消息队列是无服务器和微服务架构中使用的异步服务对服务通信的一种形式。",mq_rabbitmq: "RabbitMQ",mq_rabbitmq_desc: "通过OpenTelemetry的Prometheus接收器提供RabbitMQ监控。",// self observabilityself_observability: "自监控",self_observability_desc: "自观察性为运行SkyWalking生态系统中的组件和服务器提供了可观察性。",self_observability_oap: "SkyWalking服务",self_observability_oap_desc: "OAP后端集群本身是一个分布式流处理系统,这是对OAP后端本身的监控。",self_observability_satellite: "Satellite",self_observability_satellite_desc:"Satellite:为云原生基础设施设计的开源代理,提供了一种低成本、高效、更安全的遥测数据收集方式。它是遥测采集的推荐负载均衡器。",
}
相关文章:
SkyWalking内置参数与方法
参数 全局指标 指标指标名称all_p99所有服务响应时间的 p99 值all_p95所有服务响应时间的 p95 值all_p90所有服务响应时间的 p90 值all_p75所有服务响应时间的 p75 值all_p70所有服务响应时间的 p70 值all_heatmap所有服务响应时间的热点图 服务指标 指标指标名称service_r…...
【C++面向对象侯捷】12.虚函数与多态 | 13.委托相关设计【设计模式 经典做法,类与类之间关联起来,太妙了,不断的想,不断的写代码】
文章目录 12.虚函数与多态举例:委托 继承【观察者模式】13.委托相关设计Composite 组合模式Prototype 原型模式 12.虚函数与多态 纯虚函数 一定要 子类重新定义的 继承和复合 关系下的构造和析构 举例:委托 继承【观察者模式】 13.委托相关设计 问题…...
基于若依ruoyi-nbcio增加flowable流程待办消息的提醒,并提供右上角的红字数字提醒(五)
1、下面提供给前端待办提醒消息的接口SysNoticeController,增加如下: /*** 补充用户数据,并返回系统消息* return*/Log(title "系统消息")GetMapping("/listByUser")public R<Map<String, Object>> listByU…...
hive数据初始化
mysql版本:3.1.3 hive版本: 8.0.31 hive连接配置 <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://node88:3306/hive?createDatabaseIfNotExisttrue</value> </pr…...
React+Node——next.js 构建前后端项目
一、安装全局依赖 npm i -g create-next-app二、创建next项目 create-next-app react-next-demo //或 create-next-app react-next-demo --typescript三、加载mysql依赖 npm i -S mysql2四、运行项目 npm run dev五、创建db文件目录,目录下创建index.ts import…...
CRM系统主要包括哪些功能?
CRM系统应该要包括的功能总结为3大方向—— 核心必须要具备的功能常见尽量要有的功能可选有了自然更好的功能 以我们公司用的简道云CRM系统模板为例:https://www.jiandaoyun.com 01 核心必须要具备的功能 核心功能决定了系统是否能够被纳入CRM类别,这些…...
Nginx location 精准匹配URL = /
Location是什么? Location是Nginx中的块级指令(block directive),通过配置Location指令块,可以决定客户端发过来的请求URI如何处理(是映射到本地文件还是转发出去)及被哪个location处理。 匹配模式 分为两种模式&…...
使用JAXB将Java对象转xml
文章目录 使用JAXB将Java对象转xml1. 要求生成的xml2. Java对象3. 封装的工具类4. 测试 使用JAXB将Java对象转xml 1. 要求生成的xml <?xml version"1.0" encoding"UTF-8" ?> <root><result status"success" msg"成功&qu…...
Atlas 200 DK开发板问题总结
1.fatal error: acl/acl.h: No such file or directory 该问题是因为在设置的DDK环境变量下找不到头文件。 解决方法: 1)输入echo $DDK,查看当前DDK地址 2)在src文件夹下找到CMakeLists.txt文件,发现该文件有一个变量名…...
uniapp——实现二维码生成+保存二维码图片——基础积累
最近在做二维码推广功能,自从2020年下半年到今天,大概有三年没有用过uniapp了,而且我之前用uniapp开发的程序还比较少,因此很多功能都浪费了很多时间去查资料,现在把功能记录一下。 这里写目录标题 效果图1.根据接口返…...
零基础学前端(六)重点讲解 JavaScript
1. 该篇适用于从零基础学习前端的小白,完全从零基础角度出发 2. 我们学习时,应该主动向自己提问?只有你能提出问题,你才算是在编程中学习进步了。 3. 初学者不懂得问题很多,在自己在不懂时,一定要求助有经验…...
数据库问题记录(粗略版)oracle、mysql等主流数据库通用
1. ORA-00918:未明确定义列 该问题情况大致为:select 所取列名错误、重复等问题。 2. “select * from temp where 10; ”的含义 布尔值为FALSE,只返回表结构,不返回数据。 举一反三: select * from temp where 1&…...
ORACLE多列中取出数据最大的一条
1.需求说明: 当查询出来的数据存在多条数据时,想按照一定条件排序取出其中一条数据。 2.使用函数: row_number() over( partition by 分组字段 order by 排序字段 desc) 3.示例: --根据table_a中的pk_house&#x…...
Xamarin.Android实现App内版本更新
目录 1、具体的效果2、代码实现2.1 基本原理2.2 开发环境2.3 具体代码2.3.1 基本设置2.3.2 系统的权限授予2.3.3 进度条的layout文件2.3.4 核心的升级文件 3、代码下载4、知识点5、参考文献 1、具体的效果 有事需要在程序内集成自动更新的功能,网上找了下ÿ…...
运维工程师面经
文章目录 前言RedisMongoDBPython中的GIL(全局解释器锁)Python算法总结 前言 本博客仅做学习笔记,如有侵权,联系后即刻更改 科普: Redis 参考网址 NoSQL技术 基于内存的数据库,并且提供一定的持久化功能…...
stm32之智能垃圾桶实战
之前用过51做过一个垃圾桶的小项目,这里用32重新搞了一下。视频的效果和之前一样,可参考这个垃圾桶效果 。 一、项目描述(同51) 项目主要是模拟不用手动打开垃圾桶盖,而进行自动操作。自动打开的条件如下:…...
【C++面向对象侯捷下】2.转换函数 | 3.non-explicit-one-argument ctor
文章目录 operator double() const {} 歧义了 标准库的转换函数...
UOS Deepin Ubuntu Linux 开启 ssh 远程登录
UOS Deepin Ubuntu Linux 开启 ssh 远程登录 打开控制台 安装 openssh-server sudo apt -y install openssh-server修改 /etc/ssh/ssh_config 文件 sudo vim /etc/ssh/ssh_config找到 # Port 22 去掉 # 注释后 保存 重启 ssh 服务 sudo systemctl restart ssh设置 ssh 服务 开机…...
Postman应用——接口请求和响应(Get和Post请求)
文章目录 新增Request请求Get请求Post请求 Request请求响应Postman响应界面说明请求响应另存为示例(模板)Postman显示的响应数据清空请求响应数据保存到本地文件 这里只讲用的比较多的Get和Post请求方式,也可以遵循restful api接口规范&#…...
Linux查看哪些进程占用的系统 buffer/cache 较高 (hcache,lsof)命令
1、什么是buffer/cache ? buffer/cache 其实是作为服务器系统的文件数据缓存使用的,尤其是针对进程对文件存在 read/write 操作的时候,所以当你的服务进程在对文件进行读写的时候,Linux内核为了提高服务的读写速度,则将…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
