SkyWalking内置参数与方法
参数
全局指标
| 指标 | 指标名称 |
|---|---|
| all_p99 | 所有服务响应时间的 p99 值 |
| all_p95 | 所有服务响应时间的 p95 值 |
| all_p90 | 所有服务响应时间的 p90 值 |
| all_p75 | 所有服务响应时间的 p75 值 |
| all_p70 | 所有服务响应时间的 p70 值 |
| all_heatmap | 所有服务响应时间的热点图 |
服务指标
| 指标 | 指标名称 |
|---|---|
| service_resp_time | 服务的平均响应时间 |
| service_sla | 服务的成功率 |
| service_p99 | 服务响应时间的 p99 值 |
| service_p95 | 服务响应时间的 p95 值 |
| service_p90 | 服务响应时间的 p90 值 |
| service_p75 | 服务响应时间的 p75 值 |
| service_p50 | 服务响应时间的 p50 值 |
服务实例指标
| 指标 | 指标名称 |
|---|---|
| service_instance_sla | 服务实例的成功率 |
| service_instance_resp_time | 服务实例的平均响应时间 |
| service_instance_cpm | 服务实例每分钟调⽤次数 |
端点指标
| 指标 | 指标名称 |
|---|---|
| endpoint_cpm | 端点每分钟调⽤次数 |
| endpoint_avg, | 端点平均响应时间 |
| endpoint_sla, | 端点成功率 |
| endpoint_p99 | 端点响应时间的 p99 值 |
| endpoint_p95 | |
| endpoint_p90 | |
| endpoint_p75 | |
| endpoint_p50 |
JVM指标
| 指标 | 指标名称 |
|---|---|
| instance_jvm_cpu | |
| instance_jvm_memory_heap | |
| instance_jvm_memory_noheap | |
| instance_jvm_memory_heap_max | |
| instance_jvm_memory_noheap_max | |
| instance_jvm_young_gc_time | |
| instance_jvm_old_gc_time |
服务关系指标
| 指标 | 指标名称 |
|---|---|
| service_relation_client_cpm | 在客户端每分钟检测到的调⽤次数 |
| service_relation_server_cpm | 在服务端每分钟检测到的调⽤次数 |
| service_relation_client_call_sla | 在客户端检测到的成功率 |
| service_relation_server_call_sla | 在服务端检测到的成功率 |
| service_relation_client_resp_time | 在客户端检测到的平均响应时间 |
| service_relation_server_resp_time | 在服务端检测到的平均响应时间 |
| service_relation_client_cpm | 在客户端每分钟检测到的调⽤次数 |
| service_relation_server_cpm | 在服务端每分钟检测到的调⽤次数 |
端点关系指标
| 指标 | 指标名称 |
|---|---|
| endpoint_relation_cpm | |
| endpoint_relation_resp_time |
其他关键指标
| 指标 | 指标名称 |
|---|---|
| CPM | 每分钟请求调⽤的次数 |
| SLA | ⽹站服务可⽤性(主要是通过请求成功与失败次数来计算),9越多代表全年服务可⽤时间越长服务更可靠,停机 时间越短 |
| CLR | (公共语⾔运⾏库)在运⾏期管理程序的执⾏:主要包含:内存管理、代码安全验证、代码执⾏、垃圾收集。CLR 有⼀项服务称为GC(Garbage Collector,垃圾收集),它能为你⾃动管理内存。GC⾃动从内存中删除程序不再访问的 对象,GC是程序员不再操⼼许多以前必须执⾏的任务,⽐如释放内存和检查内存泄漏。 |
| 百分位数 | skywalking中有P50,P90,P95这种统计⼝径,就是百分位数的概念 |
内置方法参数
以下内容都是出自SkyWalking官方git
service_resp_time = from(Service.latency).longAvg();
service_sla = from(Service.*).percent(status == true);
service_cpm = from(Service.*).cpm();
service_percentile = from(Service.latency).percentile(10); // Multiple values including p50, p75, p90, p95, p99
service_apdex = from(Service.latency).apdex(name, status);
service_mq_consume_count = from(Service.*).filter(type == RequestType.MQ).count();
service_mq_consume_latency = from((str->long)Service.tag["transmission.latency"]).filter(type == RequestType.MQ).filter(tag["transmission.latency"] != null).longAvg();// Service relation scope metrics for topology
service_relation_client_cpm = from(ServiceRelation.*).filter(detectPoint == DetectPoint.CLIENT).cpm();
service_relation_server_cpm = from(ServiceRelation.*).filter(detectPoint == DetectPoint.SERVER).cpm();
service_relation_client_call_sla = from(ServiceRelation.*).filter(detectPoint == DetectPoint.CLIENT).percent(status == true);
service_relation_server_call_sla = from(ServiceRelation.*).filter(detectPoint == DetectPoint.SERVER).percent(status == true);
service_relation_client_resp_time = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).longAvg();
service_relation_server_resp_time = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.SERVER).longAvg();
service_relation_client_percentile = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).percentile(10); // Multiple values including p50, p75, p90, p95, p99
service_relation_server_percentile = from(ServiceRelation.latency).filter(detectPoint == DetectPoint.SERVER).percentile(10); // Multiple values including p50, p75, p90, p95, p99// Service Instance relation scope metrics for topology
service_instance_relation_client_cpm = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.CLIENT).cpm();
service_instance_relation_server_cpm = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.SERVER).cpm();
service_instance_relation_client_call_sla = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.CLIENT).percent(status == true);
service_instance_relation_server_call_sla = from(ServiceInstanceRelation.*).filter(detectPoint == DetectPoint.SERVER).percent(status == true);
service_instance_relation_client_resp_time = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).longAvg();
service_instance_relation_server_resp_time = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.SERVER).longAvg();
service_instance_relation_client_percentile = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.CLIENT).percentile(10); // Multiple values including p50, p75, p90, p95, p99
service_instance_relation_server_percentile = from(ServiceInstanceRelation.latency).filter(detectPoint == DetectPoint.SERVER).percentile(10); // Multiple values including p50, p75, p90, p95, p99// Service Instance Scope metrics
service_instance_sla = from(ServiceInstance.*).percent(status == true);
service_instance_resp_time = from(ServiceInstance.latency).longAvg();
service_instance_cpm = from(ServiceInstance.*).cpm();// Endpoint scope metrics
endpoint_cpm = from(Endpoint.*).cpm();
endpoint_resp_time = from(Endpoint.latency).longAvg();
endpoint_sla = from(Endpoint.*).percent(status == true);
endpoint_percentile = from(Endpoint.latency).percentile(10); // Multiple values including p50, p75, p90, p95, p99
endpoint_mq_consume_latency = from((str->long)Endpoint.tag["transmission.latency"]).filter(type == RequestType.MQ).filter(tag["transmission.latency"] != null).longAvg();// Endpoint relation scope metrics
endpoint_relation_cpm = from(EndpointRelation.*).filter(detectPoint == DetectPoint.SERVER).cpm();
endpoint_relation_resp_time = from(EndpointRelation.rpcLatency).filter(detectPoint == DetectPoint.SERVER).longAvg();
endpoint_relation_sla = from(EndpointRelation.*).filter(detectPoint == DetectPoint.SERVER).percent(status == true);
endpoint_relation_percentile = from(EndpointRelation.rpcLatency).filter(detectPoint == DetectPoint.SERVER).percentile(10); // Multiple values including p50, p75, p90, p95, p99database_access_resp_time = from(DatabaseAccess.latency).longAvg();
database_access_sla = from(DatabaseAccess.*).percent(status == true);
database_access_cpm = from(DatabaseAccess.*).cpm();
database_access_percentile = from(DatabaseAccess.latency).percentile(10);cache_read_resp_time = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Read).longAvg();
cache_read_sla = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Read).percent(status == true);
cache_read_cpm = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Read).cpm();
cache_read_percentile = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Read).percentile(10);cache_write_resp_time = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Write).longAvg();
cache_write_sla = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Write).percent(status == true);
cache_write_cpm = from(CacheAccess.*).filter(operation == VirtualCacheOperation.Write).cpm();
cache_write_percentile = from(CacheAccess.latency).filter(operation == VirtualCacheOperation.Write).percentile(10);cache_access_resp_time = from(CacheAccess.latency).longAvg();
cache_access_sla = from(CacheAccess.*).percent(status == true);
cache_access_cpm = from(CacheAccess.*).cpm();
cache_access_percentile = from(CacheAccess.latency).percentile(10);mq_service_consume_cpm = from(MQAccess.*).filter(operation == MQOperation.Consume).cpm();
mq_service_consume_sla = from(MQAccess.*).filter(operation == MQOperation.Consume).percent(status == true);
mq_service_consume_latency = from(MQAccess.transmissionLatency).filter(operation == MQOperation.Consume).longAvg();
mq_service_consume_percentile = from(MQAccess.transmissionLatency).filter(operation == MQOperation.Consume).percentile(10);
mq_service_produce_cpm = from(MQAccess.*).filter(operation == MQOperation.Produce).cpm();
mq_service_produce_sla = from(MQAccess.*).filter(operation == MQOperation.Produce).percent(status == true);mq_endpoint_consume_cpm = from(MQEndpointAccess.*).filter(operation == MQOperation.Consume).cpm();
mq_endpoint_consume_latency = from(MQEndpointAccess.transmissionLatency).filter(operation == MQOperation.Consume).longAvg();
mq_endpoint_consume_percentile = from(MQEndpointAccess.transmissionLatency).filter(operation == MQOperation.Consume).percentile(10);
mq_endpoint_consume_sla = from(MQEndpointAccess.*).filter(operation == MQOperation.Consume).percent(status == true);
mq_endpoint_produce_cpm = from(MQEndpointAccess.*).filter(operation == MQOperation.Produce).cpm();
mq_endpoint_produce_sla = from(MQEndpointAccess.*).filter(operation == MQOperation.Produce).percent(status == true);
titles
{// General Servicegeneral_service: "常规服务",general_service_desc: "通过从SkyWalking代理收集的遥测数据来观察服务和相对直接的依赖关系。",general_service_services: "服务",general_service_services_desc: "通过SkyWalking Agent收集的遥测数据观察服务。",general_service_virtual_database: "虚拟数据库",general_service_virtual_database_desc: "观察语言代理通过各种插件推测的虚拟数据库。",general_service_virtual_cache: "虚拟缓存",general_service_virtual_cache_desc: "观察语言代理通过各种插件推测的虚拟缓存服务器。",general_service_virtual_mq: "虚拟消息队列",general_service_virtual_mq_desc: "观察语言代理通过各种插件推测的虚拟消息队列服务器。",// Service Meshservice_mesh: "服务网格",service_mesh_desc: "服务网格(Istio)通过分布式或微服务架构解决了开发人员和运营商面临的挑战。",service_mesh_service: "服务",service_mesh_service_desc: "通过从Envoy访问日志服务(ALS)收集的遥测数据观察服务网格。",service_mesh_control_plane: "控制平面",service_mesh_control_plane_desc: "通过Istio的自我监控指标提供对其行为的监控。",service_mesh_data_plane: "数据平面",service_mesh_data_plane_desc: "通过Envoy Metrics Service观察Envoy Proxy。",// Functionsfunctions: "Functions",functions_desc:"FaaS(功能即服务)是一种云计算服务,允许您在没有通常与构建和启动微服务应用程序相关的复杂基础设施的情况下执行代码以响应事件。",functions_openfunction: "OpenFunction",functions_openfunction_desc: "OpenFunction作为一个FaaS平台,通过SkyWalking集成提供开箱即用的可观察性。",// Kuberneteskubernetes: "Kubernetes",kubernetes_desc: "Kubernetes是一个开源的容器编排系统,用于自动化软件部署、扩展和管理。",kubernetes_cluster: "集群",kubernetes_cluster_desc: "提供对K8S集群的状态和资源的监控。",kubernetes_service: "服务",kubernetes_service_desc: "从Kubernetes中观察服务状态和资源。",// Infrastructureinfrastructure: "基础设施",infrastructure_desc: "操作系统是整个IT系统的基础设施。它的可观察性为所有分布式和现代复杂系统的运行提供了基础。",infrastructure_linux: "Linux",infrastructure_linux_desc: "提供Linux操作系统(OS)监控。",infrastructure_windows: "Windows",infrastructure_windows_desc: "提供Windows操作系统(OS)监控。",// AWS Cloudaws_cloud: "AWS云服务",aws_cloud_desc: "亚马逊网络服务(AWS)提供可靠、可扩展且价格低廉的云计算服务。",aws_cloud_eks: "EKS",aws_cloud_eks_desc: "通过AWS Container Insights Receiver提供AWS Cloud EKS监控。",aws_cloud_s3: "S3",aws_cloud_s3_desc: "通过AWS FireHose Receiver提供AWS Cloud S3监控",aws_cloud_dynamodb: "DynamoDB",aws_cloud_dynamodb_desc: "通过AWS FireHose Receiver提供DynamoDB监控。",aws_cloud_api_gateway: "API Gateway",aws_cloud_api_gateway_desc: "通过AWS FireHose Receiver提供AWS Cloud API网关监控。",// Browserbrowser: "Browser",browser_desc: "通过Apache SkyWalking Client JS提供Web应用程序、版本和页面的浏览器端监控。",// Gatewaygateway: "网关",gateway_desc: "API网关是位于客户端和后端服务集合之间的API管理工具。",gateway_apisix: "APISIX",gateway_apisix_desc: "通过OpenTelemetry的Prometheus接收器提供APISIX监控。",gateway_aws_api_gateway: "AWS API Gateway",gateway_aws_api_gateway_desc: "通过AWS FireHose Receiver提供AWS Cloud API网关监控。",// Databasedatabase: "数据库",database_desc: "数据库是结构化信息或数据的有组织的集合,通常以电子方式存储在计算机系统中。",database_mysql_mariadb: "MySQL/MariaDB",database_mysql_mariadb_desc: "通过OpenTelemetry的Prometheus接收器提供MySQL和MariaDB服务器监控。",database_postgresql: "PostgreSQL",database_postgresql_desc: "通过OpenTelemetry的Prometheus接收器提供PostgreSQL监控。",database_dynamodb: "DynamoDB",database_dynamodb_desc: "通过AWS FireHose Receiver提供DynamoDB监控。",database_redis: "Redis",database_redis_desc: "通过OpenTelemetry的Prometheus接收器提供Redis监控。",database_elasticsearch: "Elasticsearch",database_elasticsearch_desc: "通过OpenTelemetry的Prometheus接收器提供Elasticsearch服务器监控。",database_mongodb: "MongoDB",database_mongodb_desc: "通过OpenTelemetry的Prometheus接收器提供MongoDB监控。",// Message Queuemq: "消息队列",mq_desc: "消息队列是无服务器和微服务架构中使用的异步服务对服务通信的一种形式。",mq_rabbitmq: "RabbitMQ",mq_rabbitmq_desc: "通过OpenTelemetry的Prometheus接收器提供RabbitMQ监控。",// self observabilityself_observability: "自监控",self_observability_desc: "自观察性为运行SkyWalking生态系统中的组件和服务器提供了可观察性。",self_observability_oap: "SkyWalking服务",self_observability_oap_desc: "OAP后端集群本身是一个分布式流处理系统,这是对OAP后端本身的监控。",self_observability_satellite: "Satellite",self_observability_satellite_desc:"Satellite:为云原生基础设施设计的开源代理,提供了一种低成本、高效、更安全的遥测数据收集方式。它是遥测采集的推荐负载均衡器。",
}
相关文章:
SkyWalking内置参数与方法
参数 全局指标 指标指标名称all_p99所有服务响应时间的 p99 值all_p95所有服务响应时间的 p95 值all_p90所有服务响应时间的 p90 值all_p75所有服务响应时间的 p75 值all_p70所有服务响应时间的 p70 值all_heatmap所有服务响应时间的热点图 服务指标 指标指标名称service_r…...
【C++面向对象侯捷】12.虚函数与多态 | 13.委托相关设计【设计模式 经典做法,类与类之间关联起来,太妙了,不断的想,不断的写代码】
文章目录 12.虚函数与多态举例:委托 继承【观察者模式】13.委托相关设计Composite 组合模式Prototype 原型模式 12.虚函数与多态 纯虚函数 一定要 子类重新定义的 继承和复合 关系下的构造和析构 举例:委托 继承【观察者模式】 13.委托相关设计 问题…...
基于若依ruoyi-nbcio增加flowable流程待办消息的提醒,并提供右上角的红字数字提醒(五)
1、下面提供给前端待办提醒消息的接口SysNoticeController,增加如下: /*** 补充用户数据,并返回系统消息* return*/Log(title "系统消息")GetMapping("/listByUser")public R<Map<String, Object>> listByU…...
hive数据初始化
mysql版本:3.1.3 hive版本: 8.0.31 hive连接配置 <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://node88:3306/hive?createDatabaseIfNotExisttrue</value> </pr…...
React+Node——next.js 构建前后端项目
一、安装全局依赖 npm i -g create-next-app二、创建next项目 create-next-app react-next-demo //或 create-next-app react-next-demo --typescript三、加载mysql依赖 npm i -S mysql2四、运行项目 npm run dev五、创建db文件目录,目录下创建index.ts import…...
CRM系统主要包括哪些功能?
CRM系统应该要包括的功能总结为3大方向—— 核心必须要具备的功能常见尽量要有的功能可选有了自然更好的功能 以我们公司用的简道云CRM系统模板为例:https://www.jiandaoyun.com 01 核心必须要具备的功能 核心功能决定了系统是否能够被纳入CRM类别,这些…...
Nginx location 精准匹配URL = /
Location是什么? Location是Nginx中的块级指令(block directive),通过配置Location指令块,可以决定客户端发过来的请求URI如何处理(是映射到本地文件还是转发出去)及被哪个location处理。 匹配模式 分为两种模式&…...
使用JAXB将Java对象转xml
文章目录 使用JAXB将Java对象转xml1. 要求生成的xml2. Java对象3. 封装的工具类4. 测试 使用JAXB将Java对象转xml 1. 要求生成的xml <?xml version"1.0" encoding"UTF-8" ?> <root><result status"success" msg"成功&qu…...
Atlas 200 DK开发板问题总结
1.fatal error: acl/acl.h: No such file or directory 该问题是因为在设置的DDK环境变量下找不到头文件。 解决方法: 1)输入echo $DDK,查看当前DDK地址 2)在src文件夹下找到CMakeLists.txt文件,发现该文件有一个变量名…...
uniapp——实现二维码生成+保存二维码图片——基础积累
最近在做二维码推广功能,自从2020年下半年到今天,大概有三年没有用过uniapp了,而且我之前用uniapp开发的程序还比较少,因此很多功能都浪费了很多时间去查资料,现在把功能记录一下。 这里写目录标题 效果图1.根据接口返…...
零基础学前端(六)重点讲解 JavaScript
1. 该篇适用于从零基础学习前端的小白,完全从零基础角度出发 2. 我们学习时,应该主动向自己提问?只有你能提出问题,你才算是在编程中学习进步了。 3. 初学者不懂得问题很多,在自己在不懂时,一定要求助有经验…...
数据库问题记录(粗略版)oracle、mysql等主流数据库通用
1. ORA-00918:未明确定义列 该问题情况大致为:select 所取列名错误、重复等问题。 2. “select * from temp where 10; ”的含义 布尔值为FALSE,只返回表结构,不返回数据。 举一反三: select * from temp where 1&…...
ORACLE多列中取出数据最大的一条
1.需求说明: 当查询出来的数据存在多条数据时,想按照一定条件排序取出其中一条数据。 2.使用函数: row_number() over( partition by 分组字段 order by 排序字段 desc) 3.示例: --根据table_a中的pk_house&#x…...
Xamarin.Android实现App内版本更新
目录 1、具体的效果2、代码实现2.1 基本原理2.2 开发环境2.3 具体代码2.3.1 基本设置2.3.2 系统的权限授予2.3.3 进度条的layout文件2.3.4 核心的升级文件 3、代码下载4、知识点5、参考文献 1、具体的效果 有事需要在程序内集成自动更新的功能,网上找了下ÿ…...
运维工程师面经
文章目录 前言RedisMongoDBPython中的GIL(全局解释器锁)Python算法总结 前言 本博客仅做学习笔记,如有侵权,联系后即刻更改 科普: Redis 参考网址 NoSQL技术 基于内存的数据库,并且提供一定的持久化功能…...
stm32之智能垃圾桶实战
之前用过51做过一个垃圾桶的小项目,这里用32重新搞了一下。视频的效果和之前一样,可参考这个垃圾桶效果 。 一、项目描述(同51) 项目主要是模拟不用手动打开垃圾桶盖,而进行自动操作。自动打开的条件如下:…...
【C++面向对象侯捷下】2.转换函数 | 3.non-explicit-one-argument ctor
文章目录 operator double() const {} 歧义了 标准库的转换函数...
UOS Deepin Ubuntu Linux 开启 ssh 远程登录
UOS Deepin Ubuntu Linux 开启 ssh 远程登录 打开控制台 安装 openssh-server sudo apt -y install openssh-server修改 /etc/ssh/ssh_config 文件 sudo vim /etc/ssh/ssh_config找到 # Port 22 去掉 # 注释后 保存 重启 ssh 服务 sudo systemctl restart ssh设置 ssh 服务 开机…...
Postman应用——接口请求和响应(Get和Post请求)
文章目录 新增Request请求Get请求Post请求 Request请求响应Postman响应界面说明请求响应另存为示例(模板)Postman显示的响应数据清空请求响应数据保存到本地文件 这里只讲用的比较多的Get和Post请求方式,也可以遵循restful api接口规范&#…...
Linux查看哪些进程占用的系统 buffer/cache 较高 (hcache,lsof)命令
1、什么是buffer/cache ? buffer/cache 其实是作为服务器系统的文件数据缓存使用的,尤其是针对进程对文件存在 read/write 操作的时候,所以当你的服务进程在对文件进行读写的时候,Linux内核为了提高服务的读写速度,则将…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果