01贪心:算法理论知识
贪心:01算法理论知识
什么是贪心
贪心的本质是选择每一阶段的局部最优,从而达到全局最优。
这么说有点抽象,来举一个例子:
例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?
指定每次拿最大的,最终结果就是拿走最大数额的钱。
每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。
再举一个例子如果是 有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。
贪心的套路(什么时候用贪心)
很多同学做贪心的题目的时候,想不出来是贪心,想知道有没有什么套路可以一看就看出来是贪心。
说实话贪心算法并没有固定的套路。
所以唯一的难点就是如何通过局部最优,推出整体最优。
那么如何能看出局部最优是否能推出整体最优呢?有没有什么固定策略或者套路呢?
不好意思,也没有! 靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。
有同学问了如何验证可不可以用贪心算法呢?
最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧。
可有有同学认为手动模拟,举例子得出的结论不靠谱,想要严格的数学证明。
一般数学证明有如下两种方法:
- 数学归纳法
- 反证法
看教课书上讲解贪心可以是一堆公式,估计大家连看都不想看,所以数学证明就不在我要讲解的范围内了,大家感兴趣可以自行查找资料。
面试中基本不会让面试者现场证明贪心的合理性,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了。
举一个不太恰当的例子:我要用一下1+1 = 2,但我要先证明1+1 为什么等于2。严谨是严谨了,但没必要。
虽然这个例子很极端,但可以表达这么个意思:刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心。
例如刚刚举的拿钞票的例子,就是模拟一下每次拿做大的,最后就能拿到最多的钱,这还要数学证明的话,其实就不在算法面试的范围内了,可以看看专业的数学书籍!
所以这也是为什么很多同学通过(accept)了贪心的题目,但都不知道自己用了贪心算法,因为贪心有时候就是常识性的推导,所以会认为本应该就这么做!
那么刷题的时候什么时候真的需要数学推导呢?
例如这道题目:链表:环找到了,那入口呢? (opens new window),这道题不用数学推导一下,就找不出环的起始位置,想试一下就不知道怎么试,这种题目确实需要数学简单推导一下。
贪心一般解题步骤
贪心算法一般分为如下四步:
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
这个四步其实过于理论化了,我们平时在做贪心类的题目 很难去按照这四步去思考,真是有点“鸡肋”。
做题的时候,只要想清楚 局部最优 是什么,如果推导出全局最优,其实就够了。
总结
本篇给出了什么是贪心以及大家关心的贪心算法固定套路。
不好意思了,贪心没有套路,说白了就是常识性推导加上举反例。
最后给出贪心的一般解题步骤,大家可以发现这个解题步骤也是比较抽象的,不像是二叉树,回溯算法,给出了那么具体的解题套路和模板。
相关文章:
01贪心:算法理论知识
贪心:01算法理论知识 什么是贪心 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。 这么说有点抽象,来举一个例子: 例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额࿰…...
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
文章目录 一、演示多分类效果二、PaddleClas介绍三、代码获取四、数据集获取五、环境搭建六、数据格式分析七、模型训练7.1 模型恢复训练7.2 多卡训练7.3 其他训练指标 八、模型预测九、模型评估十、PaddleClas相关博客 一、演示多分类效果 二、PaddleClas介绍 PaddleClas主要…...
PageHelp插件在复杂sql下引起的Having无法识别错误及其解决方案
1: 问题出现的场景 系统中有一个复杂SQL内嵌套了多个子查询.在改动时需要将SQL的最后一行加上having来做额外的过滤处理. 添加完having语句后发现SQL能够正常执行就直接将代码提交到了测试环境.结果在测试环境报错Unknown column ‘xxx‘ in ‘having clause. 2: 分析问题 1…...
linux中的开发工具
在刚开始使用linux的时候,我们需要在系统上写一些简单的代码,来熟悉环境以及各种指令 并且熟悉属于linux的一套开发的环境,而这对于c来说需要三个软件就可以进行简单的编码 和使用,让我们来认识一下下列工具,以及工具的…...
2023 第十二届中国智能产业高峰论坛 - 文档大模型的未来展望
目录 前言文档图像分析识别与理解中的技术挑战 文档图像分析识别与理解的研究主题文档图像分析与预处理文档解析与识别版面分析与还原文档信息抽取与理解AI安全知识化&存储检索和管理 多模态大模型在文档图像处理中的应用多模态的GPT-4在文档图像上的表现多模态的Google Ba…...
【小沐学NLP】关联规则分析Apriori算法(Mlxtend库,Python)
文章目录 1、简介2、Mlxtend库2.1 安装2.2 功能2.2.1 User Guide2.2.2 User Guide - data2.2.3 User Guide - frequent_patterns 2.3 入门示例 3、Apriori算法3.1 基本概念3.2 apriori3.2.1 示例 1 -- 生成频繁项集3.2.2 示例 2 -- 选择和筛选结果3.2.3 示例 3 -- 使用稀疏表示…...
对话ChatGPT:AIGC时代下,分布式存储的应用与前景
随着科技的飞速发展,我们正步入一个被称为AIGC时代的全新阶段,人工智能、物联网、大数据、云计算成为这个信息爆炸时代的主要特征。自2022年11月以来,ChatGPT的知名度迅速攀升,引发了全球科技爱好者的极大关注,其高超的…...
java多线程学习笔记一
一、线程的概述 1.1 线程的相关概念 1.1.1 进程(Process) 进程(Process)是计算机的程序关于某数据集合上的一次运行活动,是操作系统进行资源分配与调度的基本单位。 可以把进程简单的理解为操作系统中正在有运行的一…...
BOM与DOM--记录
BOM基础(BOM简介、常见事件、定时器、this指向) BOM和DOM的区别和联系 JavaScript的DOM与BOM的区别与用法详解 DOM和BOM是什么?有什么作用? 图解BOM与DOM的区别与联系 BOM和DOM详解 JavaScript 中的 BOM(浏览器对…...
Docker安装MongoDB
一、docker安装mongodb MongoDB 是一个免费的开源跨平台面向文档的 NoSQL 数据库程序。 二、安装步骤 1.docker 拉取mysql镜像 docker pull mongo:latest 2.运行容器 docker run -itd --name mongo -p 27017:27017 mongo --auth参数说明: -p 27017:27017 &#…...
不要对正则表达式进行频繁重复预编译
背景 在频繁调用场景,如方法体内或者循环语句中,新定义Pattern会导致重复预编译正则表达式,降低程序执行效率。另外,在 JDK 中部分 入参为正则表达式格式的 API,如 String.replaceAll, String.split 等,也…...
vue入门及小项目小便签条
vue 框架:是一个半成品软件,是一套可重用的,通用的,软件基础代码模型。基于框架进行开发,更加快捷 ,更加高效 v-bind为HTML标签绑定属性值,如设置href,css样式等 v-model在表单元素上创建双向数…...
详解TCP/IP协议第四篇:数据在网络中传输方式的分类概述
文章目录 前言 一:面向有连接型与面向无连接型 1:大致概念 2:面向有连接型 3:面向无连接型 二:电路交换与分组交换 1:分组交换概念 2:分组交交换过程 三:根据接收端数量分…...
SpringMvc决战-【SpringMVC之自定义注解】
目录 一、前言 1.1.什么是注解 1.2.注解的用处 1.3.注解的原理 二.注解父类 1.注解包括那些 2.JDK基本注解 3. JDK元注解 4.自定义注解 5.如何使用自定义注解(包括:注解标记【没有任何东西】,元数据注解)? 三…...
【MySQL集群一】CentOS 7上搭建MySQL集群:一主一从、多主多从
CentOS 7上搭建MySQL集群 介绍一主一从步骤1:准备工作步骤2:安装MySQL步骤3:配置主服务器步骤4:创建复制用户步骤5:备份主服务器数据,如果没有数据则省略这一步步骤6:配置从服务器步骤7…...
RGB格式
Qt视频播放器实现(目录) RGB的使用场景 目前,数字信号源(直播现场的数字相机采集的原始画面)和显示设备(手机屏幕、笔记本屏幕、个人电脑显示器屏幕)使用的基本上都是RGB格式。 三原色 RGB是…...
认识面向对象-PHP8知识详解
面向对象编程,也叫面向对象程序设计,是在面向过程程序设计的基础上发展而来的,它比面向过程编程具有更强的灵活性和扩展性。 它用类、对象、关系、属性等一系列东西来提高编程的效率,其主要的特性是可封装性、可继承性和多态性。…...
毕业设计|基于51单片机的空气质量检测PM2.5粉尘检测温度设计
基于51单片机的空气质量检测PM2.5粉尘检测温度设计 1、项目简介1.1 系统构成1.2 系统功能 2、部分电路设计2.1 LED信号指示灯电路设计2.2 LCD1602显示电路2.3 PM2.5粉尘检测电路设计 3、部分代码展示3.1 串口初始化3.1 定时器初始化3.2 LCD1602显示函数 4 演示视频及代码资料获…...
星闪空口技术初探
星闪技术设计目标 在星闪技术的应用场景中,最低的时延要求达到了20us量级,比如智能座舱的主动降噪。最高的可靠性要求达到了99.9999%,比如智能制造的传感器与执行器的消息收发。除了低时延和高可靠之外,高精度同步、多并发和信息…...
如何在不失去理智的情况下调试 TensorFlow 训练程序
一、说明 关于tensorflow的调试,是一个难啃的骨头,除了要有耐力,还需要方法;本文假设您是一个很有耐力的开发者,为您提供一些方法;这些方法也许不容易驾驭,但是依然强调您只要有耐力,…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
