当前位置: 首页 > news >正文

基于PLE结合卡尔曼滤波的RSSI定位算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

...............................................................
for Num_xb = Num_xb2Num_xbIndx = Indx + 1;Dis        = RoomLength/(Num_xb-1); for m=1:Stimesmrng(m);%生成节点坐标Position_X = (0.7*rand)*RoomLength;Position_Y = (0.7*rand)*RoomWidth;Position   = [Position_X,Position_Y];%计算节点到信标的距离for i=1:Num_xbXB(:,i)   = [i;(i-1)*Dis;0];Dist(:,i) = sqrt((Position_X-((i-1)*Dis))^2+Position_Y^2);end%基于RSS的定位算法  for i=1:Num_xbNumber_rssi(1,i) = i;%每个信标节点的RSSI值if Dist(i) > Good_radius  Number_rssi(2,i) = 0;elseNumber_rssi(2,i) = func_RSSI_cal(Dist(i),Alpha);endendNumber_rssi2 = Number_rssi;Number_rssi_save{m} = Number_rssi;Position_X2{m}      = Position_X;Position_Y2{m}      = Position_Y;%进行卡尔曼滤波%进行卡尔曼滤波%进行卡尔曼滤波tmps            = Number_rssi_save{m}(2,:);kalman_dat2{m}  = func_kalman(tmps); Number_rssi(1,:)= Number_rssi_save{m}(1,:);Number_rssi(2,:)= kalman_dat2{m};Position_X  = Position_X2{m};Position_Y  = Position_Y2{m};%将RSSI值从大到小排列  for i = 1:Num_xbfor j = i:Num_xbif Number_rssi(2,i) < Number_rssi(2,j)a = Number_rssi(1,j);b = Number_rssi(2,j);Number_rssi(2,j) = Number_rssi(2,i);Number_rssi(1,j) = Number_rssi(1,i);Number_rssi(1,i) = a;Number_rssi(2,i) = b;endendend%RSSI值最大的信标的距离for i=1:Best_xbDist(i) = Dis*( (func_RSSI_cal(Dis,Alpha)/Number_rssi(2,i))^(1/2.8) );end%求未知节点坐标for i=1:Best_xbBeaconn(1,i) = XB(2,Number_rssi(1,i));Beaconn(2,i) = XB(3,Number_rssi(1,i));endAll_num=Best_xb; for i=1:2for j=1:(All_num-1)a(i,j) = Beaconn(i,j)-Beaconn(i,All_num);endendA =-2*(a');for i=1:(All_num-1)B(i,1)=Dist(i)^2-Dist(All_num)^2-Beaconn(1,i)^2+Beaconn(1,All_num)^2-Beaconn(2,i)^2+Beaconn(2,All_num)^2;end%计算X坐标X1    = pinv(A'*A)*A'*B;X_pos = X1(1,1);%计算Y坐标z    = 0;for j=1:Best_xb    z = z + sqrt(abs(Dist(j)^2-(X_pos-Beaconn(1,j))^2));endY_pos = z/Best_xb;Loc = [X_pos;Y_pos];%点位误差error1(m) = sqrt((abs(Position_X-Loc(1)))^2+(abs(Position_Y-Loc(2)))^2);%横坐标误差error2(m) = abs(Loc(1)-Position_X);%纵坐标误差error3(m) = abs(Loc(2)-Position_Y);Number_rssis(:,m) = Number_rssi(2,:); endNumber_rssixb{Indx} = mean(Number_rssis,2);Number_xb{Indx}     = [1:Num_xb];
end
figure;
semilogy(Number_xb{1},Number_rssixb{1},'b-o');
grid on;
xlabel('信标数目');
ylabel('RSSI');
legend('信标数:30,RSSI排序后仿真图');
save result.mat Number_xb Number_rssixb
36_001m

4.算法理论概述

         基于PLE(Power-Law Equalizer)结合卡尔曼滤波的RSSI(Received Signal Strength Indicator)定位算法是一种利用无线信号强度进行位置估计的方法。该方法通过PLE算法对RSSI进行预处理,然后使用卡尔曼滤波器对处理后的数据进行位置和速度的估计。其整体流程图如下图所示:

一、基本原理

      PLE算法:PLE算法是一种用于提取信号特征的方法,它可以削弱多径效应等干扰因素对RSSI的影响,提高位置估计的准确性。PLE算法的核心思想是对接收到的信号强度进行幂次变换,将非线性关系转化为线性关系。具体公式如下:

Y = X^α

       其中,X表示接收到的信号强度,Y表示经过PLE处理后的信号强度,α为PLE算法的参数,需要根据实际环境进行调整。
      卡尔曼滤波器:卡尔曼滤波器是一种高效的递归滤波器,它可以通过对过去和现在的测量结果进行加权,估计未来的状态变量。在RSSI定位中,卡尔曼滤波器可以用于估计被定位物体的位置和速度。具体公式如下:

预测步骤:

X_pred = FX_est + BU
P_pred = FP_estF^T + Q

更新步骤:

Z_pred = HX_pred
Y = Z - Z_pred
K = P_pred
H^T*(HP_predH^T + R)^(-1)
X_est = X_pred + KY
P_est = (I - K
H)*P_pred

其中,X_est表示估计的状态变量(即位置和速度),P_est表示估计误差协方差矩阵,F表示状态转移矩阵,B表示控制输入矩阵,U表示控制输入变量,Z表示测量值,H表示观测矩阵,Q表示过程噪声协方差矩阵,R表示测量噪声协方差矩阵,K表示卡尔曼增益矩阵,Y表示测量残差,I表示单位矩阵。

二、算法流程

  1. 初始化:设定初始位置、速度、PLE算法的参数α、卡尔曼滤波器的参数(F、B、H、Q、R)等。
  2. PLE处理:对接收到的RSSI进行PLE处理,得到处理后的信号强度。
  3. 卡尔曼滤波:将处理后的信号强度作为测量值Z,使用卡尔曼滤波器进行位置和速度的估计。
  4. 更新估计值:根据卡尔曼滤波器的输出结果,更新估计的位置和速度。
  5. 迭代处理:重复执行步骤2-4,直到达到设定的迭代次数或收敛条件。
  6. 输出结果:输出最终估计的位置和速度。

三、优缺点

基于PLE结合卡尔曼滤波的RSSI定位算法具有以下优点:

  1. 可以削弱多径效应等干扰因素对RSSI的影响,提高位置估计的准确性。
  2. 通过对过去和现在的测量结果进行加权,可以减小测量噪声对位置估计的影响。
  3. 可以有效地利用RSSI的时空相关性,提高位置估计的稳定性。
  4. 具有较好的鲁棒性和适应性,可以适用于不同的环境和应用场景。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于PLE结合卡尔曼滤波的RSSI定位算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 ............................................................... for Num_xb Num_xb2Num_…...

uniapp项目实践总结(十九)版本更新和热更新实现方法

导语:当一个 APP 应用开发完成以后,就要上架应用商店,但有时候修改一些小问题或者推出一些活动,又不想频繁地提交应用商店审核,那么就可以使用应用内更新功能来进行应用的版本升级更新或热更新,下面就介绍一下实现的方法。 目录 准备工作原理分析实战演练案例展示准备工作…...

一起学数据结构(8)——二叉树中堆的代码实现

在上篇文章中提到&#xff0c;提到了二叉树中一种特殊的结构——完全二叉树。对于完全二叉树&#xff0c;在存储时&#xff0c;适合使用顺序存储。对于非完全二叉树&#xff0c;适合用链式存储。本文将给出完全二叉树的顺序结构以及相关的代码实现&#xff1a; 1. 二叉树的结构…...

Linux环境变量配置说明(配置jdk为例-摘录自尚硅谷技术文档)

配置环境变量的不同方法 Linux的环境变量可在多个文件中配置,如/etc/profile&#xff0c;/etc/profile.d/.sh&#xff0c;~/.bashrc&#xff0c;~/.bash_profile等&#xff0c;下面说明上述几个文件之间的关系和区别。 bash的运行模式可分为login shell和non-login shell。 例…...

idea常用插件笔记

文章目录 Free Mybatis Toollombok插件idea插件导出导入 idea提供了很多好用的插件&#xff0c;之前都装了的&#xff0c;但是换了下电脑&#xff0c;什么都没了&#xff0c;所以记录下方便以后用。 Free Mybatis Tool mybatis跳转插件&#xff0c;再也不用费力的找xml了。 l…...

搜索二叉树【C++】

文章目录 二叉搜索树二叉搜索树的模拟实现构造函数拷贝构造函数赋值运算符重载函数析构函数Insert循环递归 Erase循环递归 Find循环递归 二叉搜索树的应用K模型KV模型 完整代码普通版本递归版本 二叉搜索树 二叉搜索树又称为二叉排序树&#xff0c;它或者是一棵空树&#xff0…...

华为云云耀云服务器L实例评测|认识redis未授权访问漏洞 漏洞的部分复现 设置连接密码 redis其他命令学习

前言 最近华为云云耀云服务器L实例上新&#xff0c;也搞了一台来玩&#xff0c;期间遇到过MySQL数据库被攻击的情况&#xff0c;数据丢失&#xff0c;还好我有几份备份&#xff0c;没有造成太大的损失。昨天收到华为云的邮箱提醒&#xff0c;我的redis数据库没有设置密码&…...

快速安装NGINX

快速安装NGINX #安装依赖包 yum -y install gcc pcre pcre-devel zlib zlib-devel openssl openssl-devel#下载NGINX curl -O https://nginx.org/download/nginx-1.21.6.tar.gz#解压NGINX tar -zxvf nginx-1.21.6.tar.gz cd nginx-1.21.6.tar.gz#配置 ./configure --prefix/…...

一台电脑远程内网的另外一台电脑,禁止远程的电脑连接外网,只允许内网连接

一台电脑远程内网的另外一台电脑&#xff0c;禁止远程的电脑连接外网&#xff0c;只允许内网连接 1.找到右下角网卡图标&#xff0c;右键图标选择“打开网络和共享中心”。 3、点击“更改适配器设置”。 4、右键正在使用的网卡“本地连接”打开属性 5、找到“internet协…...

山西电力市场日前价格预测【2023-09-24】

日前价格预测 预测说明&#xff1a; 如上图所示&#xff0c;预测明日&#xff08;2023-09-24&#xff09;山西电力市场全天平均日前电价为496.09元/MWh。其中&#xff0c;最高日前电价为705.54元/MWh&#xff0c;预计出现在14: 30。最低日前电价为333.70元/MWh&#xff0c;预计…...

MQ---第二篇

系列文章目录 文章目录 系列文章目录一、RabbitMQ事务消息二、RabbitMQ死信队列、延时队列一、RabbitMQ事务消息 通过对信道的设置实现 channel.txSelect();通知服务器开启事务模式;服务端会返回Tx.Select-Okchannel.basicPublish;发送消息,可以是多条,可以是消费消息提交…...

C++ 创建文件并写入内容

文章目录 1.问题2.filesystem3.示例参考文献 1.问题 C 如何向指定路径的文件写入内容呢&#xff1f; 这里有几点要求&#xff1a; 如果目录不存在需要自动创建。如果文件不存在需要自动创建。以覆盖的方式写入内容。 2.filesystem C17 带来了一个新的库&#xff1a;filesy…...

微信小程序rich-text里面写多行溢出显示省略号在ios中不显示的问题

问题&#xff1a;微信小程序rich-text里面写多行溢出显示省略号在ios中不显示的问题 解决方法&#xff1a;需要给一个默认的div标签&#xff0c;在div写行内样式 overflow : hidden; text-overflow: ellipsis; display: -webkit-box; -webkit-line-clamp: 3; -webkit-box-o…...

解决Win11/10中Edge浏览器页面加载不出来、打不开问题|有网但是打不开,加载不了

问题症状 edge浏览器打不开&#xff0c;有网络能正常上网&#xff0c;但是edge浏览器无法浏览。网络质量很高&#xff0c;但是页面就是加载不出来&#xff0c;详情如下&#xff1a; &#xff08;我是在科学上网后造成这样子的原因&#xff0c;现在将我的方法分享一下&#xff…...

【DRAM存储器五】DRAM存储器的架构演进-part2

&#x1f449;个人主页&#xff1a;highman110 &#x1f449;作者简介&#xff1a;一名硬件工程师&#xff0c;持续学习&#xff0c;不断记录&#xff0c;保持思考&#xff0c;输出干货内容 参考书籍&#xff1a;《Memory Systems - Cache, DRAM, Disk》 目录 以提升吞吐…...

分享一个基于uniapp+springboot技术开发的校园失物招领小程序(源码、lw、调试)

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&…...

RabbitMQ工作模式——Routing路由模式

1.Routing路由模式 Routing生产者代码 public class Producer_Routing {public static void main(String[] args) throws IOException, TimeoutException {//1.创建连接工厂ConnectionFactory factory new ConnectionFactory();//2.设置参数factory.setHost("172.16.98.…...

Python字典的增删改查以及嵌套

嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 &#x1f447; &#x1f447; &#x1f447; 更多精彩机密、教程&#xff0c;尽在下方&#xff0c;赶紧点击了解吧~ python源码、视频教程、插件安装教程、资料我都准备好了&#xff0c;直接在文末名片自取就可 字典 基础数…...

【淘宝开店】新手入门开网店教程

一、上架产品流程顺序 1. 上架10个产品2. 早中晚各上架1件产品3. 连续上架4天 二、产品培训 动销率要求: 店铺产品数必须>10公式: 店铺最近30天有销量产品数 / 店铺上架总产品数 * 100%1. 从动销率可以得出, 店铺产品不宜过多2. 小卖家前期最佳建议产品数10个 三、上架产品…...

计网第五章(运输层)(五)(TCP拥塞控制)

目录 一、基本概念 二、拥塞控制算法 慢开始&#xff1a; 拥塞避免&#xff1a; 快重传&#xff1a; 快恢复&#xff1a; 一、基本概念 若对网络中某一资源的需求超过了该资源所能提供的可用部分&#xff08;供不应求&#xff09;&#xff0c;网络性能就会变坏。 在计算…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...