当前位置: 首页 > news >正文

辨析常见的医学数据分析(相关性分析回归分析)

目录

1 常见的三种分类结果?

2 什么是相关性分析?

        相关性分析的结果怎么看?

3 什么是回归分析?

        1)前提

        2)常见的回归模型

4 对于存在对照组实验的医学病例如何分析?

1)卡方检验

2)Fisher 精确概率法


        为了更好理解下述辨析,假设有一份关于膝关节骨性关节炎的数据:(注:这里仅为示意,没有任何医学借鉴含义)

患者编号年龄性别BMI是否为关节炎关节炎严重程度软骨损伤类型
00160023.41-是轻度1-软骨软化
00256126.11-是中度2-软骨裂隙
00364025.51-是轻度3-局灶性缺损
00463026.81-是重度4-弥漫性变薄
*软骨损伤类型的分类方式参考了文献《Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection》

1 常见的三种分类结果?

        二元分类:e.g. 是/否 为关节炎

        多元有序分类:疾病严重程度的分级(分类结果有序等差,e.g.轻度、中度、重度依次等差递增

        多元无序分类:疾病的种类,e.g.肺癌、乳腺癌、胃癌,这里如软骨损伤的类型。这些分类结果没有等级上的关系,都是并列关系的诊断结果。

2 什么是相关性分析?

        两个变量之间是否存在相关性及计算相关程度的大小

        主要分为两类:线性相关 && 秩相关

线性相关分析秩相关分析
类型参数检验非参数检验
数据需求双定量变量(连续型数值变量),均满足正态分布定量或等级变量,即至少有一个变量为偏态分布或等级变量
分析方法Pearson相关Spearman相关
相关系数Pearson相关系数,rSpearman相关系数,r_{s}
p值与结论p<0.05:两变量总体线性相关p<0.05:两变量总体相关
r值与结论

|r| > 0.8,两变量存在极强的相关;

0.6 < |r| < 0.8,强相关;

0.4 < |r| < 0.6,中等相关;

|r| < 0.4,弱相关。

        相关性分析的结果怎么看?

                ①先看显著性p值,(变量间是否存在显著性影响的关系)只有存在显著性相关(即 p < 0.05),再分析r值;(若不存在相关性,考虑筛选别的影响因子纳入表格)

                ②看相关性系数r值,判断变量间是显著强相关/中等相关/弱相关。

3 什么是回归分析?

        如果说,相关性分析是看自变量对因变量是否有影响,那么,回归分析是看自变量如何影响因变量的模型拟合。

        相关性分析基于两两变量直接的关系探究;而回归分析一次性纳入了所有可能相关的变量,模拟真实的环境以找到真正有独立影响性的因素,并得到这些因素是如何作用的。

        1)前提

        建立回归模型的多变量不能存在共线性的关系(如,BMI是由身高与体重的线性计算公式得到的,那么建立模型时就不能同时纳入BMI和体重两个自变量)

        2)常见的回归模型

二元Logistic回归适用于二元分类(是否发生疾病)
多元有序Logistic回归适用于多元有序分类
多元无序Logistic回归适用于多元无序分类
Cox回归

含有“时间数据”的二元Logistic回归

(疾病发生的速度

4 对于存在对照组实验的医学病例如何分析?

1)卡方检验

        卡方检验进行分析的目的是比较差异性

        建立了两组假设:①零假设:观察组和对照组的作用结果一致。(如,某新药物【观察组】和常规药物【对照组】的疗效一致。)

                                     ②备选假设:观察组和对照组的作用结果显著不一致。(如,想要证实新药物的疗效更好。)

        卡方检验的p值<0.05,则拒绝零假设,接受备选假设;反之,接受零假设。

        参考:卡方(χ2),四格表应用条件,理论频数_weixin_34307464的博客-CSDN博客,由于基于卡方分布模型,使用卡方检验的前提:①样本总量>40;②四格表的理论频数≠0并且理论频数<5的样本不超过总样本数的20%。

2)Fisher 精确概率法

        对于小样本,或四格表的理论频数=0的情况,使用Fisher 精确概率法。

        目的: 以超几何分布为理论模型,用来检验一次随机实验的结果是否支持对于某个随机实验的假设,当测试结果出现小概率事件则认定原有假设不被支持。

        同样地,Fisher 检验的p值<0.05,则拒绝零假设。

        与卡方检验的区别在于:在实际计算当中分为单边检验(即超几何检验)和双边检测。实际应用中,Fisher检验前先有一个预期,如:想要得到新药比常规药的有效概率更大,则选择Fisher检验的“大于”的单侧;若只是想要得到新药与常规药的有效性有差异,则选择Fisher双边检测。

相关文章:

辨析常见的医学数据分析(相关性分析回归分析)

目录 1 常见的三种分类结果&#xff1f; 2 什么是相关性分析&#xff1f; 相关性分析的结果怎么看&#xff1f; 3 什么是回归分析&#xff1f; 1&#xff09;前提 2&#xff09;常见的回归模型 4 对于存在对照组实验的医学病例如何分析&#xff1f; 1&#xff09;卡方检验…...

SpringBoot项目中只执行一次的任务写法

SpringBoot项目中只执行一次的任务写法 有时候我们需要进行初始化工作&#xff0c;就说明只要进行一次的工作&#xff0c;那么&#xff0c;在Springboot项目中如何做到任务只进行一次呢 利用定时任务 在Spring Boot项目中&#xff0c;你可以使用Spring框架提供的Scheduled注解…...

TCK、TMS、TDI、TDO的含义

这四个信号是JTAG&#xff08;Joint Test Action Group&#xff09;界面的一部分。JTAG是一种用于测试和验证集成电路和印刷电路板的技术&#xff0c;也用于进行设备编程和调试。这四个信号分别是&#xff1a; TCK (Test Clock)&#xff1a; 意义&#xff1a;测试时钟&#xff…...

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据...

全文链接&#xff1a;http://tecdat.cn/?p24456 如果你正在进行统计分析&#xff1a;想要加一些先验信息&#xff0c;最终你想要的是预测。所以你决定使用贝叶斯&#xff08;点击文末“阅读原文”获取完整代码数据&#xff09;。 相关视频 但是&#xff0c;你没有共轭先验。你…...

【PowerShell】PowerShell的Core版本的额外配置

在PowerShell 7.1 安装完成后,默认情况下打开PowerShell 会直接进入到系统内置的PowerShell,如果希望通过远程连接或者PowerShell Web Access 进入到PowerShell 7环境的界面,就需要进行环境的再配置才能实现PowerShell 7.1 的环境连接。需要为外部的环境提供连接的话需要按照…...

数据结构----链式栈

目录 前言 链式栈 操作方式 1.存储结构 2.初始化 3.创建节点 4.判断是否满栈 5.判断是否空栈 6.入栈 7.出栈 8.获取栈顶元素 9.遍历栈 10.清空栈 完整代码 前言 前面我们学习过了数组栈的相关方法&#xff0c;&#xff08;链接&#xff1a;线性表-----栈&#xff08;栈…...

实在智能携手40+央企,探索财务大模型及数智化实践与应用

“这次培训给我一个最大的感触就是&#xff0c;过去以为AI智能化、大模型技术是很高深的事情。但现在&#xff0c;我们通过RPA等数字化工具&#xff0c;自主根据自己的工作岗位&#xff0c;完成业务自动化流程的开发和设计。AI技术没有想象中的那么难入门。” 这是一位参加了“…...

upload-labs文件上传1-5关

第一关 编写一句话木马1.php&#xff0c;编写完成后将后缀名修改为png 将1.png上传&#xff0c;上传时使用bp抓包 抓包后将后缀名修改为png 连接蚁剑 第二关 上传1.php&#xff0c;显示文件类型不正确 使用bp抓包发送重发器&#xff0c;修改文件后缀名后点击发送&#xff0c;…...

git的基本使用

查看当前分支 git branch //查看本地分支 git branch -a // 查看本地和远程的分支切分支 git checkout -b 分支的名字从当前分支切换到其他分支 拉取远程分支到本地 拉取远程develop分支代码到本地develop分支 git checkout -b develop origin/developgit merge B分支合并…...

Mac台式电脑内存清理方法教程

对于一些小白用户&#xff0c;如果觉得以上的清理方法比较复杂却又想要更好的优化Mac电脑内存&#xff0c;专业的系统清理软件是一个不错的选择。比起花几个小时时间浏览文件夹、删除临时文件、缓存和卸载残留。Cleanmymac X&#xff0c;只需单击几下即可完成所有内存清理工作&…...

FL Studio怎么破解?2023年最新FL Studio 21图文安装激活教程?FL 21中文版下载 v21.1.1.3750 汉化 版

fl studio21中文解锁特别破解版是一款功能强大的编曲软件&#xff0c;也就是众所熟知的水果软件。它可以编曲、剪辑、录音、混音&#xff0c;让您的计算机成为全功能录音室。除此之外&#xff0c;这款软件功能非常强大&#xff0c;为用户提供了许多音频处理工具&#xff0c;包含…...

Zookeeper高级_四字命令

之前使用stat命令来验证ZooKeeper服务器是否启动成功&#xff0c;这里的stat命令就是ZooKeeper 中最为典型的命令之一。ZooKeeper中有很多类似的命令&#xff0c;它们的长度通常都是4个英文字母&#xff0c;因此我们称之为“四字命令”。 添加配置 vim zoo.cfg 4lw.commands…...

/usr/bin/ld: cannot find -lmysqlcllient

文章目录 1. question: /usr/bin/ld: cannot find -lmysqlcllient2. solution 1. question: /usr/bin/ld: cannot find -lmysqlcllient 2. solution 在 使用编译命令 -lmysqlclient时&#xff0c;如果提示这个信息。 先确认一下 有没有安装mysql-devel 执行如下命令 yum inst…...

折线图geom_line()参数选项

往期折线图教程 图形复现| 使用R语言绘制折线图折线图指定位置标记折线图形状更改 | 绘制动态折线图跟着NC学作图 | 使用python绘制折线图 前言 我们折线的专栏推出一段时间&#xff0c;但是由于个人的原因&#xff0c;一直未进行更新。那么今天&#xff0c;我们也参考《R语…...

百度SEO优化基本原理(掌握SEO基础,提高网站排名)

随着互联网的迅速发展&#xff0c;越来越多的企业开始意识到网站优化的重要性&#xff0c;其中百度SEO优化是企业不可忽视的一项工作。本文将介绍百度SEO优化的基本概念、步骤、原理、解决方法和提升网站标题优化的方法。蘑菇号-www.mooogu.cn 百度SEO优化是指针对百度搜索引擎…...

2023 ICPC 网络赛 第一场 部分题解 (待完善)

D Transitivity 题解: 根据题意可以推出结论: 如果存在连通块,那么这个连通块要满足条件,必然是满连通块. 一共有两种情况 1. 存在一个连通块不是满连通块 设cnt表示连通块的节点个数, num表示连通块边的个数 一个连通块的贡献 cnt*(cnt-1)/2 - num; 那么最终答案 连…...

Hadoop的HDFS高可用方案

一、Hadoop高可用简介 Hadoop 高可用 (High Availability) 分为 HDFS 高可用和 YARN 高可用&#xff0c;两者的实现基本类似&#xff0c;但 HDFSNameNode 对数据存储及其一致性的要求比 YARN ResourceManger 高得多&#xff0c;所以它的实现也更加复杂 1、HDFS系统高可用简介…...

【计算机基础】让我们重新认识一下Visual Stduio及其操作,知识点汇总!!

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…...

使用Node构建私人代理池

在进行大规模数据采集时&#xff0c;经常会遇到网站反爬虫机制导致爬虫被封的问题。为了解决这个困扰&#xff0c;本文将向大家介绍如何利用Node.js构建私人代理池&#xff0c;提供稳定的代理&#xff0c;实现高效、可靠的爬虫操作。跟随本文一起学习&#xff0c;拥有解封爬虫的…...

2023年“羊城杯”网络安全大赛 决赛 AWDP [Break+Fix] Web方向题解wp 全

终于迎来了我的第一百篇文章。 这次决赛赛制是AWDP。BreakFix&#xff0c;其实就是CTFFix&#xff0c;Fix规则有点难崩。Break和Fix题目是一样的。 总结一下&#xff1a;败北&#xff0c;还是太菜了得继续修炼一下。 一、Break ezSSTI 看到是SSTI&#xff0c;焚靖直接一把梭…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...