当前位置: 首页 > news >正文

图像语义分割概述

图像语义分割概述

一、图像语义分割概念

图像语义分割(Image Semantic Segmentation)是一项计算机视觉任务,其目标是将输入的图像分割成多个区域,并为每个像素分配一个语义类别标签,以表示该像素属于图像中的哪个物体或区域。与其他图像分割任务不同,图像语义分割不仅关注于分割图像,还要理解图像中不同部分的语义含义。

二、传统图像分割算法

2.1 基于阈值的分割方法

阈值法对于背景和目标拥有不同灰度的图像比较适用,它的基本思想是根据图像的灰度特征计算一个或多个灰度阈值,获取图片中所有像素的灰度值,与计算得到的阈值进行逐一比较,最后根据比较结果将像素划分为适当的类别。

阈值法中常用的方法有:固定阈值分割,直方图双峰法,迭代阈值图像分割,自适应阈值图像分割,最大类间方差法,均值法,最佳阈值。

2.2 基于边缘的分割方法

在图像中的两个不同区域中,一个区域到另一个区域会发生灰度和颜色的变化,即在两个区域的边缘发生突变。基于灰度值的边缘检测比较常用,它是一种基于观察的方法,不同区域的边缘的灰度值将显示阶跃或屋顶变化。如果通过傅里叶变换将图像从空间域变换到频域,则边缘对应于高频部分。
微分算子法是最常见的边缘检测算法,它利用一阶导数的极值和二阶导数的零点来确定边缘。要获得更好的分割效果,可以让边缘检测算法和与其互补的分割方法一起使用。

2.3 基于区域的分割方法

基于区域的分割方法通过一定准则来确定一个基础区域,以此进行分割,区域分割方法有两种基本形式,分别为区域生长和全局思想。对于区域生长,以某个像素为中心扩散,合并相似性质的其他像素;对于全局思想,把整张图片作为一个整体,分割成不同的子区域。
常用的区域分割算法有:种子区域生长法,区域分裂合并法,分水岭法

三、基于卷积神经网络的语义分割算法

3.1 FCN

论文网址:https://arxiv.org/abs/1411.4038

全卷积神经网络(fully convolutional networks,FCN)是语义分割的开端,语义分割从此发展速度迅速。网络模型的端到端训练也是由全卷积神经网络实现的。

它的主要贡献在如下三个方面:全卷积,上采样和跳跃连接。

全卷积。在一般 CNN 分类网络中,输入图片的尺寸大小都是依据网络的设计结构决定的,是唯一的,但是 FCN 的图片的输入尺寸是不同大小的。FCN 舍弃了 CNN 分类网络后面的 3 个全连接层,并使用卷积层进行代替,不仅保留了图片的位置信息,而且还整合了 CNN 的输出特征。

上采样。在图片经过一系列的卷积、池化操作之后,得到的特征图尺寸远小于原始图片尺寸,为了将特征图中的像素与原始图像的像素对应,进行像素预测,同时减小分割精度的损失,作者使用了反卷积操作。对特征图进行解码时,使用反卷积进行操作,使得特征图的大小等于原图大小。

跳跃连接。FCN 通过卷积、池化以及反卷积的操作后,丢失了很多细节信息,通过跳跃连接,使得浅层信息和高层语义信息结合起来,使得模型的鲁棒性更强。

3.2 U-Net

论文网址:https://arxiv.org/abs/1505.04597v1

U-Net最初是为了医学图像分割而设计的分割网络,其本身使用的是编码器-解码器结构,并且使用了跳跃连接,对浅层特征和高级语义进行融合操作。

在编码器部分,图片一共经历了 4 次下采样,通过卷积层和最大池化层组合,每一次下采样,特征图的通道数变成原来的 2 倍。在解码器部分,每次上采样之后,都和与之对应下采样的特征图进行融合,之后通道数减半,在解码器的最后一层,使用 1Χ1 卷积将类别数变成期望的分类数。

3.3 PSPnet

论文网址:https://arxiv.org/abs/1612.01105

PSPnet的主要的创新点是提出了金字塔池化模块(pyra-mid pooling module),它能够聚合目标的不同位置的上下文信息,提高捕获全局信息的性能。同时加入了辅助损失函数,使得训练网络时的收敛速度提升。

四、应用场景

  1. 自动驾驶:自动驾驶汽车需要理解道路上的各种物体和障碍物,以做出安全驾驶决策。

  2. 医学图像处理:在医学影像中,语义分割可用于分割出特定组织或病变区域,以帮助医生诊断和治疗。

  3. 遥感图像分析:卫星图像和航拍图像的语义分割可用于土地利用分类、环境监测等应用。

  4. 图像编辑和合成:语义分割可用于图像编辑,例如将一个物体从图像中删除或将不同的物体合成到图像中。

相关文章:

图像语义分割概述

图像语义分割概述 一、图像语义分割概念 图像语义分割(Image Semantic Segmentation)是一项计算机视觉任务,其目标是将输入的图像分割成多个区域,并为每个像素分配一个语义类别标签,以表示该像素属于图像中的哪个物体…...

ViT细节与代码解读

最近看到两篇解读ViT很好的文章,备忘记录一下: 先理解细节 1:再读VIT,还有多少细节是你不知道的 再理解代码 1:ViT源码阅读-PyTorch - 知乎...

Linux中软链接与硬链接的作用、区别、创建、删除

1、软链接与硬链接的作用 (1)软链接 软链接是Linux中常用的命令,它的功能是某一文件在另外一个位置建立一个同步的链接,相当于C语言中的指针,建立的链接直接指向源文件所在的地址,软链接不会另外占用资源,当同一文件需要在多个位置被用到的时候,就会使用到软连接。 …...

第一章:最新版零基础学习 PYTHON 教程(第十四节 - Python 条件和循环语句–Python 中的 with 语句)

在Python中,with语句用于异常处理,使代码更简洁、更具可读性。它简化了文件流等公共资源的管理。观察以下代码示例,了解使用 with 语句如何使代码更简洁。 Python3 # 文件处理# 1) 不使用with语句 file = open(文件路径, w) # 打开文件以进行写操作 file.write(你好,世界…...

安科瑞AMC16-DETT铁塔jizhan直流电能计量模块,直流计量用

安科瑞虞佳豪壹捌柒陆壹伍玖玖零玖叁 9月20日,在杭州亚运会火炬传递的现场,不少人通过网络与亲友连线,共同见证火炬传递的历史时刻。上午6时,杭州铁塔的一线通信保障人员共27人就已经在本次火炬传递收官点位奥体中心西广场附近&a…...

WebGL笔记:WebGL中JS与GLSL ES 语言通信,着色器间的数据传输示例:js控制绘制点位

js改变点位&#xff0c;动态传值 <canvas id"canvas"></canvas><!-- 顶点着色器 --><script id"vertexShader" type"x-shader/x-vertex">attribute vec4 a_Position;void main() {// 点位gl_Position a_Position;// 尺…...

一文读懂 Redis 缓存系统

【摘要】本文介绍了Redis缓存原理、详细解析了缓存模型、缓存一致性和缓存异常场景。 【作者】李杰&#xff0c;专注于Java虚拟机技术、云原生技术领域的探索与研究。 尽管&#xff08;关系型&#xff09;数据库系统 (SQL) 带来了许多出色的属性&#xff0c;例如 ACID&#x…...

初识Java 10-1 集合

目录 泛型和类型安全的集合 基本概念 添加一组元素 打印集合 List Iterator&#xff08;迭代器&#xff09; 本笔记参考自&#xff1a; 《On Java 中文版》 在进行程序设计时我们会发现&#xff0c;程序总是会根据某些在运行时才能知道的条件来创建新的对象。这意味着&am…...

Linux- pipe()系统调用

管道 管道&#xff08;Pipe&#xff09;是一种用于进程间通信&#xff08;IPC&#xff09;的简单而有效的方式。在UNIX和类UNIX操作系统&#xff08;如Linux&#xff09;中&#xff0c;管道提供了一种让一个进程将其输出发送给另一个进程的输入的机制。管道通常用于数据流的单…...

数据库常用指令

检查Linux系统是否已经安装了MySQL&#xff1a; sudo service mysql start...

[Studio]Manifest merger failed with multiple errors, see logs 解决方法

记录一个引入库时经常会出错的问题 最近使用一个图片上传库后项目代码报了一个错&#xff1a; Execution failed for task :app:processDebugManifest. > Manifest merger failed with multiple errors, see logs* Try: Run with --info or --debug option to get more lo…...

【数据结构与算法】不就是数据结构

前言 嗨喽小伙伴们你们好呀&#xff0c;好久不见了,我已经好久没更新博文了&#xff01;之前因为实习没有时间去写博文&#xff0c;现在已经回归校园了。我看了本学期的课程中有数据结构这门课程&#xff08;这么课程特别重要&#xff09;&#xff0c;因为之前学过一点&#xf…...

封装一个高级查询组件

封装一个高级查询组件 背景一&#xff0c;前端相关代码二&#xff0c;后端相关代码三&#xff0c;呈现效果总结 背景 业务有个按照自定义选择组合查询条件&#xff0c;保存下来每次查询的时候使用的需求。查了一下项目里的代码没有现成的组件可以用&#xff0c;于是封装了一个 …...

代码随想录第七章 栈与队列

1、leecode232 用栈实现队列 使用栈模拟队列的行为&#xff0c;仅使用一个栈是不行的&#xff0c;所以需要两个栈&#xff0c;一个是输入栈&#xff0c;一个是输出栈。 #include<iostream> #include<vector> #include<string> #include<stack> #incl…...

SQL Server对象类型(5)——4.5. 同义词(Synonym)

4.5. 同义词(Synonym) 4.5.1. 同义词概念 与Oracle中相同,SQL Server中的同义词是虚的、被定义的模式对象,其本身并不存储任何数据。其用途之一就是为其他类型基础对象提供一个别名;用途之二就是为应用提供一个抽象层,以方便后期应用相关的基础对象的更改和维护。用户可…...

IP风险查询:抵御DDoS攻击和CC攻击的关键一步

随着互联网的普及&#xff0c;网络攻击变得越来越普遍和复杂&#xff0c;对企业和个人的网络安全构成了重大威胁。其中&#xff0c;DDoS&#xff08;分布式拒绝服务&#xff09;攻击和CC&#xff08;网络连接&#xff09;攻击是两种常见且具有破坏性的攻击类型&#xff0c;它们…...

Tune-A-Video论文阅读

论文链接&#xff1a;Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation 文章目录 摘要引言相关工作文生图扩散模型文本到视频生成模型文本驱动的视频编辑从单个视频生成 方法前提DDPMsLDMs 网络膨胀微调和推理模型微调基于DDIM inversio…...

Dataset和DataLoader用法

Dataset和DataLoader用法 在d2l中有简洁的加载固定数据的方式&#xff0c;如下 d2l.load_data_fashion_mnist() # 源码 Signature: d2l.load_data_fashion_mnist(batch_size, resizeNone) Source: def load_data_fashion_mnist(batch_size, resizeNone):"""…...

【跟小嘉学习区块链】二、Hyperledger Fabric 架构详解

系列文章目录 【跟小嘉学习区块链】一、区块链基础知识与关键技术解析 【跟小嘉学习区块链】一、区块链基础知识与关键技术解析 文章目录 系列文章目录[TOC](文章目录) 前言一、Hyperledger 社区1.1、Hyperledger(面向企业的分布式账本)1.2、Hyperledger社区组织结构 二、Hype…...

springboot下spring方式实现Websocket并设置session时间

概述 springboot实现websocket有4种方式 servlet&#xff0c;spring&#xff0c;netty&#xff0c;stomp 使用下来spring方式是最简单的. springboot版本&#xff1a;3.1.2 jdk&#xff1a;17 当前依赖版本 <dependency><groupId>org.springframework.boot<…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

WebRTC调研

WebRTC是什么&#xff0c;为什么&#xff0c;如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...

宠物车载安全座椅市场报告:解读行业趋势与投资前景

一、什么是宠物车载安全座椅&#xff1f; 宠物车载安全座椅是一种专为宠物设计的车内固定装置&#xff0c;旨在保障宠物在乘车过程中的安全性与舒适性。它通常由高强度材料制成&#xff0c;具备良好的缓冲性能&#xff0c;并可通过安全带或ISOFIX接口固定于车内。 近年来&…...

AWSLambda之设置时区

目标 希望Lambda运行的时区是东八区。 解决 只需要设置lambda的环境变量TZ为东八区时区即可&#xff0c;即Asia/Shanghai。 参考 使用 Lambda 环境变量...