机器学习第十四课--神经网络
总结起来,对于深度学习的发展跟以下几点是离不开的:
- 大量的数据(大数据)
- 计算资源(如GPU)
- 训练方法(如预训练)
很多时候,我们也可以认为真正让深度学习爆发起来的是数据和算力,这并不是没道理的。
由于神经网络是深度学习的基础,学习神经网络本身是非常必要的。神经网络中所涉及到的前向传播、反向传播等技术以及梯度消失等现象都会出现在其他深度学习模型如深度神经网络、卷积神经网络、RNN、LSTM中。我们强烈先学好神经网络再去接触深度学习相关的技术,这样会事半功倍。
神经网络,首先是线性变换,然后通过激活函数非线性化
一.线性激活函数
线性激活函数实际上是没作用的,即便加了也等于什么都没加,因为它对信号不会做任何的处理。这有点类似于管道,来了信号之后原封不动地输出出去。之所以提出线性激活函数,其主要目的是为了完整性。那什么会用到线性激活函数呢?通常在,深度模型中的最后一层会用到。另外,如果我们没有叠加任何的激活函数到神经元,默认可以认为是加了线性激活函数。
二.非线性激活函数
2.1Sigmoid激活函数
定义域 :负无穷到正无穷
值域:0到1
特点:
1.值域映射到0-1
2.有边界
3.递增

2.2二分类问题

2.3tanh激活函数

三.拥有一层隐含层的神经网络
单个输出
多个输出---softmax激活函数

四.多层神经网络
当我们增加额外的隐含层时就可以得到多层神经网络。至于隐含层的个数是没有限制的,我们可以随意搭建很多层的神经网络。为什么要增加隐含层呢?道理很简单,增加隐含层可直接导致模型的复杂度变高,随之带来的就是可以学出x到y的更复杂的映射关系。

首先 这里的参数只有w和b 根据x1-xd输入 输出f(x) 然后会有一个loss 然后反向传播(梯度下降法)求w和b
注:对于分类问题,最后一层的激活函数是softmax
五.深度神经网络的损失函数
任何模型训练的第一步是明确损失函数。模型训练过程无非就是在优化损失函数,从而找到让损失函数最小的模型的参数。在这一节我们主要以深度神经网络为例来讲解反向传播算法,自然而然的,第一步就是要定义出损失函数。在这里先假定任务是分类任务,所以损失部分需要使用交叉熵损失(cross-entropy loss)。
相关文章:
机器学习第十四课--神经网络
总结起来,对于深度学习的发展跟以下几点是离不开的: 大量的数据(大数据)计算资源(如GPU)训练方法(如预训练) 很多时候,我们也可以认为真正让深度学习爆发起来的是数据和算力,这并不是没道理的。 由于神经网络是深度学习的基础,学…...
React(react18)中组件通信04——redux入门
React(react18)中组件通信04——redux入门 1. 前言1.1 React中组件通信的其他方式1.2 介绍redux1.2.1 参考官网1.2.2 redux原理图1.2.3 redux基础介绍1.2.3.1 action1.2.3.2 store1.2.3.3 reducer 1.3 安装redux 2. redux入门例子3. redux入门例子——优…...
最新AI创作系统+ChatGPT网站源码+支持GPT4.0+支持ai绘画+支持国内全AI模型
一、AI创作系统 SparkAi系统是基于很火的GPT提问进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT系统?小编这里写一个详细图文教程吧&#x…...
react+umi项目中引入antd组件报错:“Button”不能用作 JSX 组件解决方案
具体报错信息 “Button”不能用作 JSX 组件。 Its type ‘(props: IProps) > React.ReactElement’ is not a valid JSX element type. 不能将类型“(props: IProps) > React.ReactElement”分配给类型“(props: any, deprecatedLegacyContext?: any) > ReactNode”。…...
常用算法模板
目录 快读、快输 快读、快输 #include <cstdio> #define Re register int #define LD double// 读整数 inline void in(Re &x) {int f 0; x 0; char c getchar();while (c < 0 || c > 9) f | c -, c getchar();while (c > 0 && c < 9) x …...
最全跨境独立站建站详细步骤解析
对于跨境电商卖家来说,无论是规避“鸡蛋放在同一个篮子里”的风险,还是追求更多的销售额和利润,多平台、多站点的布局都是其至关重要的战略。加之市场的变化带来了新的发展机遇,这也使得如今很多出海企业都在抢占独立站新风口。然…...
提升群辉AudioStation音乐体验,实现公网音乐播放
文章目录 本教程解决的问题是:按照本教程方法操作后,达到的效果是本教程使用环境:1 群晖系统安装audiostation套件2 下载移动端app3 内网穿透,映射至公网 很多老铁想在上班路上听点喜欢的歌或者相声解解闷儿,于是打开手…...
虹科分享 | 谷歌Vertex AI平台使用Redis搭建大语言模型
文章来源:虹科云科技 点此阅读原文 基础模型和高性能数据层这两个基本组件始终是创建高效、可扩展语言模型应用的关键,利用Redis搭建大语言模型,能够实现高效可扩展的语义搜索、检索增强生成、LLM 缓存机制、LLM记忆和持久化。有Redis加持的大…...
VS Code 代码跳转到定义(.js 和 .vue文件跳转)
vscode 代码跳转到定义(.js 和 .vue文件跳转) 在日常的开发工作中,我们经常需要跳转到方法或变量的定义处,以便更好地理解和修改代码。VS Code 是目前比较流行的开发工具,然而它默认情况下并不支持这个功能,…...
华为云云耀云服务器L实例评测 | Docker 部署 Reids容器
文章目录 一、使用Docker部署的好处二、Docker 与 Kubernetes 对比三、云耀云服务器L实例 Docker 部署 Redis四、可视化工具连接Redis⛵小结 一、使用Docker部署的好处 Docker的好处在于:在不同实例上运行相同的容器 Docker的五大优点: 持续部署与测试…...
聚观早报 | 杭州亚运开幕科技感拉满;腾讯官宣启动「青云计划」
【聚观365】9月25日消息 杭州亚运开幕科技感拉满 腾讯官宣启动「青云计划」 FF任命新全球CEO 比亚迪夺得多国销冠 iPhone 15/15 Pro销售低于预期 杭州亚运开幕科技感拉满 杭州第19届亚洲运动会开幕式23日晚在杭州奥体中心主体育馆举行,这届开幕式可谓科技感拉…...
Linux Gnome桌面无法打开终端Terminal
文章目录 前言排障解决方式一解决方式二 前言 由于不知名的原因,导致gonme桌面里打开terminal一直转圈,无法打开。 这里我的故障是已知的,我是因为要把英文改为中文。但是界面依旧是英文,同时导致终端无法打开。 此方式centos d…...
MySQL学习笔记15
1、内连接查询(重点): 基本语法: select 数据表1.字段列表,数据表2.字段列表 from 数据表1 inner join 数据表2 on 连接条件; 案例:获取产品表中每个产品的分类信息: mysql> select * from tb_goods …...
6、SpringBoot_项目的打包与运行
七、SpringBoot项目的打包与运行 1.目前项目怎么运行的 通过浏览器访问idea 将jar部署到服务器 2.maven 打包项目 命令 mvn package使用命令后会得到如下的jar 3.程序运行 命令 java -jar 项目.jar启动如下 4.springboot打包需要插件 插件 <plugin><group…...
图像语义分割概述
图像语义分割概述 一、图像语义分割概念 图像语义分割(Image Semantic Segmentation)是一项计算机视觉任务,其目标是将输入的图像分割成多个区域,并为每个像素分配一个语义类别标签,以表示该像素属于图像中的哪个物体…...
ViT细节与代码解读
最近看到两篇解读ViT很好的文章,备忘记录一下: 先理解细节 1:再读VIT,还有多少细节是你不知道的 再理解代码 1:ViT源码阅读-PyTorch - 知乎...
Linux中软链接与硬链接的作用、区别、创建、删除
1、软链接与硬链接的作用 (1)软链接 软链接是Linux中常用的命令,它的功能是某一文件在另外一个位置建立一个同步的链接,相当于C语言中的指针,建立的链接直接指向源文件所在的地址,软链接不会另外占用资源,当同一文件需要在多个位置被用到的时候,就会使用到软连接。 …...
第一章:最新版零基础学习 PYTHON 教程(第十四节 - Python 条件和循环语句–Python 中的 with 语句)
在Python中,with语句用于异常处理,使代码更简洁、更具可读性。它简化了文件流等公共资源的管理。观察以下代码示例,了解使用 with 语句如何使代码更简洁。 Python3 # 文件处理# 1) 不使用with语句 file = open(文件路径, w) # 打开文件以进行写操作 file.write(你好,世界…...
安科瑞AMC16-DETT铁塔jizhan直流电能计量模块,直流计量用
安科瑞虞佳豪壹捌柒陆壹伍玖玖零玖叁 9月20日,在杭州亚运会火炬传递的现场,不少人通过网络与亲友连线,共同见证火炬传递的历史时刻。上午6时,杭州铁塔的一线通信保障人员共27人就已经在本次火炬传递收官点位奥体中心西广场附近&a…...
WebGL笔记:WebGL中JS与GLSL ES 语言通信,着色器间的数据传输示例:js控制绘制点位
js改变点位,动态传值 <canvas id"canvas"></canvas><!-- 顶点着色器 --><script id"vertexShader" type"x-shader/x-vertex">attribute vec4 a_Position;void main() {// 点位gl_Position a_Position;// 尺…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
