35.浅谈贪心算法
概述
相信大家或多或少都对贪心算法有所耳闻,今天我们从一个应用场景展开
假设存在下面需要付费的广播台,以及广播台信号可以覆盖的地区。 如何选择最少的广播台,让所有的地区都可以接收到信号?
广播台 | 覆盖地区 |
---|---|
k1 | 北京、上海、天津 |
k2 | 广州、北京、深圳 |
k3 | 成都、上海、杭州 |
k4 | 上海、天津 |
k5 | 杭州、大连 |
- 贪心算法是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法;
- 贪心算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。
思路分析
如何找出覆盖所有地区的广播台的集合呢,使用穷举法实现,列出每个可能的厂播台的集合,这被称为幂集。假设总的有n个广播台,则广播台的组合总共有2” -1 个,假设每秒可以计算10个子集,如:
广播台数量 | 子集总数2n | 需要的时间 |
---|---|---|
5 | 32 | 3.2秒 |
10 | 1024 | 102.4秒 |
32 | 4294967296 | 13.6年 |
100 | 1.2676506e+30 | 4*1023年 |
可以看出,对于组合问题,采用穷举法的代价太高了。对于此类问题,我们通常采用贪心算法:
目前并没有算法可以快速计算得到准备的值, 使用贪心算法,则可以得到非常接近的解,并且效率高。选择策略上,因为需要覆盖全部地区的最小集合:
- 遍历所有的广播电台,找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系);
- 将这个电台加入到一个集合中(比如ArrayList),想办法把该电台覆盖的地区在下次比较时去掉;
- 重复第1步直到覆盖了全部的地区。
问题详解
根据上例,我们首先是确定了目标区域的,即假定allArea = {
“北京”、“上海”,“天津”,“广州”,“成都”,“深圳”,“杭州”,“大连”
}
首先我遍历所有电台发现,K1,K2,K3都覆盖了三个城市,按照顺位,不妨先选择K1作为maxKey;
那么接下来我就会将K1覆盖的城市从allArea中5剔除,得到allArea = {“广州”,“成都”,“深圳”,“杭州”,“大连”}
然后我会继续在allArea中匹配最优解,此时,K2,K3,K5都覆盖了两个城市,继续根据顺位选择K2作为maxKey,则allArea 继续剔除 覆盖城市,得到 allArea = {“成都”,“杭州”,“大连”}
依次类推,就可以得到贪心算法的最优解: K1,K2,K3,K5
代码实现
public class GreedyAlgorithm {public static void main(String[] args) {//创建广播电台HashMap<String, HashSet<String>> broadcasts = new HashMap<>();//初始化电台HashSet<String> hashSet1 = new HashSet<>();hashSet1.add("北京");hashSet1.add("上海");hashSet1.add("天津");HashSet<String> hashSet2 = new HashSet<>();hashSet2.add("广州");hashSet2.add("北京");hashSet2.add("深圳");HashSet<String> hashSet3 = new HashSet<>();hashSet3.add("成都");hashSet3.add("上海");hashSet3.add("杭州");HashSet<String> hashSet4 = new HashSet<>();hashSet4.add("上海");hashSet4.add("天津");HashSet<String> hashSet5 = new HashSet<>();hashSet5.add("杭州");hashSet5.add("大连");//加入到Mapbroadcasts.put("K1",hashSet1);broadcasts.put("K2",hashSet2);broadcasts.put("K3",hashSet3);broadcasts.put("K4",hashSet4);broadcasts.put("K5",hashSet5);//allAreas所有地区(未覆盖地区)HashSet<String> allAreas = new HashSet<>();allAreas.add("北京");allAreas.add("上海");allAreas.add("天津");allAreas.add("广州");allAreas.add("深圳");allAreas.add("成都");allAreas.add("杭州");allAreas.add("大连");//创建ArrayList,存放选择的电台集合ArrayList<String> selects = new ArrayList<>();//定义一个临时的集合,在遍历过程中存放 某个电台覆盖的地区 和 当前还没有覆盖地区的交集//其实就是某个K和AllAreas的交集HashSet<String> tempSet = new HashSet<>();String maxKey = null;//定义一个maxKey,保存在一次遍历过程中,能够覆盖最大未覆盖地区的电台key//如果maxKey不为空,最终会加入到selects中while (allAreas.size()!=0){//若allAreas不为0,则表示还没有覆盖到所有的地区//每次循环要置空maxKey,杜绝上次循环的影响maxKey = null;//遍历broadcasts,取出对应的Keyfor (String key : broadcasts.keySet()) {//每进行一次,要清空tempSettempSet.clear();HashSet<String> areas = broadcasts.get(key);//当前key能覆盖的地区tempSet.addAll(areas);//求出temp和allAreas集合的交集,交集赋给tempSettempSet.retainAll(allAreas);//如果当前集合包含的未覆盖地区的数量比maxKey指向的集合的地区还多,就需要重置maxKeyif (tempSet.size()>0 &&(maxKey==null||tempSet.size()>broadcasts.get(maxKey).size()))//体现贪心算法的特点,每一次都要最优解maxKey = key;}//maxKey != null,就应该将maxKey 加入selectsif (maxKey!=null){selects.add(maxKey);//将maxKey指向的广播电台覆盖的地区从allAreas中移除allAreas.removeAll(broadcasts.get(maxKey));}}System.out.println("得到的结果:"+selects);}}
小结
- 贪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似最优解的结果;
- 比如上题的算法选出的是K1,K2,K3,K5,符合覆盖了全部的地区;
- 但是我们发现 K2,K3,K4,K5 也可以覆盖全部地区,如果K2 的使用成本低于K1,那么我们上题的 K1,K2,K3,K5 虽然是满足条件,但是并不是最优的;
- 对于实际应用中丰富的条件如何权衡,还需要大家根据实际情况分析,算法只是提供一种思路,灵活变通才能展现它最强大的力量。
关注我,共同进步,每周至少一更。——Wayne
相关文章:
35.浅谈贪心算法
概述 相信大家或多或少都对贪心算法有所耳闻,今天我们从一个应用场景展开 假设存在下面需要付费的广播台,以及广播台信号可以覆盖的地区。 如何选择最少的广播台,让所有的地区都可以接收到信号? 广播台覆盖地区k1北京、上海、天津…...
QT时间日期定时器类(1.QDate类)【QT基础入门 Demo篇】
使用时候需要包含头文件 创建一个 QDate 实例 设置 QDate 的日期 获取 QDate 的日期 获取当前是周几 判断 QDate 的有效性 格式化 QDate 的显示字符串 计算 QDate 的差值 QDate显示格式 年月日转换时间戳时间戳转换年月日 QDate相关…...

记一次实战案例
1、目标:inurl:news.php?id URL:https://www.lghk.com/news.php?id5 网站标题:趋时珠宝首饰有限公司 手工基础判断: And用法 and 11: 这个条件始终是为真的, 也就是说, 存在SQL注入的话, 这个and 11的返回结果必定是和正常页…...

Serv-U FTP服务器结合cpolar内网穿透实现共享文件并且外网可远程访问——“cpolar内网穿透”
文章目录 1. 前言2. 本地FTP搭建2.1 Serv-U下载和安装2.2 Serv-U共享网页测试2.3 Cpolar下载和安装 3. 本地FTP发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1. 前言 科技日益发展的今天,移动电子设备似乎成了我们生活的主角,智能…...

EasyWindow - Android 悬浮窗框架
官网 https://github.com/getActivity/EasyWindow 项目介绍 本框架意在解决一些极端需求,如果是普通的 Toast 封装推荐使用 Toaster 集成步骤 如果你的项目 Gradle 配置是在 7.0 以下,需要在 build.gradle 文件中加入 allprojects {repositories {/…...

tp5连接多个数据库
一、如果你的主数据库配置文件都在config.php里 直接在config.php中中定义db2: 控制器中打印一下: <?php namespace app\index\controller; use think\Controller; use think\Db; use think\Request; class Index extends Controller {public fun…...

SAP PO运维(一):系统概览异常处理
打开SAP PIPO Netweaver Administration界面,系统概览下显示异常: 参考SAP note: 2577844 - AS Java Monitoring and Logging parametrization best practice service/protectedwebmethods = SDEFAULT -GetVersionInfo -GetAccessPointList -ListLogFiles -ReadLogFile -Para…...

安全厂商安恒信息加入龙蜥社区,完成 与 Anolis OS 兼容适配
近日,杭州安恒信息技术股份有限公司(以下简称“安恒信息”)签署了 CLA(Contributor License Agreement,贡献者许可协议),正式加入龙蜥社区(OpenAnolis),并成为…...

maven找不到jar包
配置settings.xml文件之后出现报错找不到jar包 先改maven设置: 然后在重新清理构建项目: 可以通过执行以下命令清理本地 Maven 仓库 mvn dependency:purge-local-repository...

MySQL的数据目录
文章目录 MySQL的数据目录1. MYSQL目录结构2. 数据库与文件系统的关系2.1 查看默认数据库2.2 数据库在文件系统中的表示2.1.1 MyISAM存储引擎模式2.1.2 InnoDB存储引擎模式 2.3 视图在文件系统中的表示2.4 小结 MySQL的数据目录 1. MYSQL目录结构 查询主要目录结构:…...

详解MySQL索引+面试题
前言: 📕作者简介:热爱编程的小七,致力于C、Java、Python等多编程语言,热爱编程和长板的运动少年! 📘相关专栏Java基础语法,JavaEE初阶,数据库,数据结构和算法系列等,大家有兴趣的可以看一看。 😇😇😇有兴趣的话关注博主一起学习,一起进步吧! 一、索引概述…...
设计模式:桥接器模式(C++实现)
桥接器模式(Bridge Pattern)是一种结构设计模式,它将抽象部分与实现部分分离,使它们可以独立地变化。桥接器模式通常用于需要在多个维度上扩展和变化的情况下,将抽象和实现解耦。 以下是一个简单的C桥接器模式的示例&a…...

公网远程访问GeoServe Web管理界面【内网穿透】
文章目录 前言1.安装GeoServer2. windows 安装 cpolar3. 创建公网访问地址4. 公网访问Geo Servcer服务5. 固定公网HTTP地址 前言 GeoServer是OGC Web服务器规范的J2EE实现,利用GeoServer可以方便地发布地图数据,允许用户对要素数据进行更新、删除、插入…...

AIMS医院手术麻醉信息系统全套源码,自主版权,开箱即用
手术麻醉临床信息系统有着完善的临床业务功能,能够涵盖整个围术期的工作,能够采集、汇总、存储、处理、展现所有的临床诊疗资料。通过该系统的实施,能够规范麻醉科的工作流程,实现麻醉手术过程的信息数字化,自动生成麻…...

中秋特辑——3D动态礼盒贺卡(可监听鼠标移动)
前言 「作者主页」:雪碧有白泡泡 「个人网站」:雪碧的个人网站 「推荐专栏」: ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄,vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄ÿ…...

Json文件序列化读取
Json文件 [{"name":"清华大学","location":"北京","grade":"1"},{"name":"北京大学","location":"北京","grade":"2"} ] 安装包 代码 Program.c…...
ClickHouse(15)ClickHouse合并树MergeTree家族表引擎之GraphiteMergeTree详细解析
GraphiteMergeTree该引擎用来对Graphite数据(图数据)进行瘦身及汇总。对于想使用ClickHouse来存储Graphite数据的开发者来说可能有用。 如果不需要对Graphite数据做汇总,那么可以使用任意的ClickHouse表引擎;但若需要,那就采用GraphiteMerge…...
面试题库(二):Java基础
hashmap1.7跟1.8?优化点?红黑树化为什么是8?退化为什么?dp怎么玩?回溯怎么玩?递归怎么玩?stack能解决啥问题?fifo能解决啥问题?dfs怎么玩?bfs怎么玩?双亲委派模型。JDBC和双亲委派模型关系TCP四次挥手,TIME_WAIT发生在哪一方 TIME_WAIT过多如何处理HashMap底层结构…...
Linux:无法接收组播数据
1、检查Linux系统是否接收到组播数据 使用tcpdump工具,检查源或者目的地址(例如,239.1.1.1:9001)的数据包 tcpdump -i ens33 host 239.1.1.1 port 9001 2、关闭防火墙 临时关闭: systemctl stop firewalld service ip…...

R语言贝叶斯非参数模型:密度估计、非参数化随机效应META分析心肌梗死数据...
全文链接:http://tecdat.cn/?p23785 最近,我们使用贝叶斯非参数(BNP)混合模型进行马尔科夫链蒙特卡洛(MCMC)推断(点击文末“阅读原文”获取完整代码数据)。 概述 相关视频 在这篇文…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...