2023 ICPC 网络赛 第一场(补题:F)
7题罚时879, 队排235,校排79。
除了I题dp没注意空间限制第一发没有用滚动数组MLE,以及G题启发式合并脑抽用set当容器T一发,以及K没注意是平方的期望白wa4发这些应当避免的失误外,基本满意。剩下的题基本都是当时写不出的了,在这里补一发F的题解。
本题解学自:知乎-CurryWOE
F. Alice and Bob(博弈 + 计数)
很妙的一个博弈思维题,并没有多难的算法,只是利用了题目的性质与博弈的基本思想,以及巧妙的计数方法,但实际比赛中还是很难想到的,银牌题中上的难度。
题意
给定大小为 n n n 的数组 a a a,Alice先手,两人轮流走步,每次可以选择两个数 a i , a j a_i, a_j ai,aj,将其任意改变(只能变为整数),设改变后为 a i 2 , a j 2 a_{i_2},a_{j_2} ai2,aj2,要求改变后满足 a i + a j = a i 2 + a j 2 a_i+a_j = a_{i_2}+a_{j_2} ai+aj=ai2+aj2,且 ∣ a i − a j ∣ < ∣ a i 2 − a j 2 ∣ |a_i-a_j|<|a_{i_2}-a_{j_2}| ∣ai−aj∣<∣ai2−aj2∣. 最后不能走步的人输。
为了帮助Alice胜利,你可以选择保留任意 3 3 3 个数,移除其他数,问有多少方案使得Alice必胜。
思路
以上规则翻译过来就是,每次选的两个数必须使得两者差距变小,这样我们发现答案与数的大小无关,只与数的相对大小有关。于是我们可以分情况讨论什么样的三元组使得Alice必胜或必败。
设三元组为 ( x , y , z ) ( x ≤ y ≤ z ) (x, y, z)(x\leq y\leq z) (x,y,z)(x≤y≤z). 因为只与相对大小有关,可以通过平移转换为 ( 0 , x , x + y ) (0, x, x + y) (0,x,x+y),并且若 x > y x > y x>y 可以对称转换一下,使得 x < y x < y x<y 例如: ( 0 , 3 , 5 ) → ( − 5 , − 3 , 0 ) → ( 0 , 2 , 5 ) (0,3,5)\rightarrow(-5,-3,0)\rightarrow(0,2,5) (0,3,5)→(−5,−3,0)→(0,2,5).
接下来要用到博弈的思想:
1.所有终止状态都为必败态。
2.只要能转移到必败态的状态就是必胜态。
3.只能转移到必胜态的状态就是必败态。
分情况讨论
-
x > 0 , y > 0 x > 0,y>0 x>0,y>0,三元组为 ( 0 , x , x + y ) (0, x, x + y) (0,x,x+y)
我们考虑该三元组的下一个状态,有两种可能即 ( y , x , x ) (y, x, x) (y,x,x) 或者 ( x + k , x , y − k ) (x + k, x, y - k) (x+k,x,y−k). 再考虑状态 ( y , x , x ) (y,x,x) (y,x,x) 的后继,只能为 ( x + k , x , y − k ) (x + k, x, y - k) (x+k,x,y−k).
若 ( y , x , x ) (y,x,x) (y,x,x) 为必败态,则当前状态可以转移到该必败态,当前为必胜态。
若 ( y , x , x ) (y,x,x) (y,x,x) 为必胜态,由于其只有一个后继,说明该后继一定为必败态,而当前状态又能转移到该必败态,当前状态同样必胜。
综上, ( 0 , x , x + y ) (0, x, x + y) (0,x,x+y) 一定为必胜态。 -
x > 0 , y = 0 / x = 0 , y > 0 x > 0,y = 0/x = 0,y>0 x>0,y=0/x=0,y>0,三元组为 ( 0 , 0 , x ) (0, 0, x) (0,0,x)( x > 0 x>0 x>0)
为何 ( 0 , x , x ) (0,x,x) (0,x,x) 同样为该状态,还是考虑平移与对称变化: ( 0 , x , x ) → ( − x , 0 , 0 ) → ( x , 0 , 0 ) (0,x,x)\rightarrow (-x,0,0)\rightarrow(x,0,0) (0,x,x)→(−x,0,0)→(x,0,0). 而 y > 0 y>0 y>0 的情况因为只是一个变量名,将其名称与 x x x 交换即可。
(1)若 x x x 为奇数当前状态的后继最多为 ( 0 , ⌊ x 2 ⌋ , ⌈ x 2 ⌉ ) (0,\lfloor\frac x2\rfloor,\lceil\frac x2\rceil) (0,⌊2x⌋,⌈2x⌉) 即可以表示为 ( 0 , x , y ) ( x < y ) (0,x,y)(x<y) (0,x,y)(x<y). 而情况1 已经证明了该后继状态为必胜态,则当前状态为必败态。
(2)若 x x x 为偶数当前状态后继若选择变为 ( 0 , x , y ) (0,x,y) (0,x,y),则必败。考虑另一种情况即将 x x x 一分为二变为 ( 0 , x 2 , x 2 ) (0,\frac x2,\frac x2) (0,2x,2x),此时我们发现又一次变为了情况2,说明这是一个递归的过程,而答案只与 x x x 包含的 2 2 2 的幂次有关。
综上归纳整理有:若 x x x 包含的 2 2 2 的幂次为偶数先手必败,否则先手必胜。
合并起来看:
- 三元组 ( x , y , z ) , ( x < y < z ) (x,y,z),(x<y<z) (x,y,z),(x<y<z),必胜。
- 三元组 ( x , y , z ) , ( x = y / y = z ) (x,y,z),(x=y/y=z) (x,y,z),(x=y/y=z),若 ( z − x ) (z - x) (z−x) 包含的 2 2 2 的幂次为偶数必败,否则必胜。
- 三元组 ( x , y , z ) , ( x = y = z ) (x,y,z),(x=y=z) (x,y,z),(x=y=z),必败。
现在我们考虑如何计数,直接求必胜态数量不好求,我们考虑容斥求出必败态数量再用总数减去。情况3的必败态数量很好求,我们只需要考虑情况2的。
遍历所有数,设当前数为 x x x,那么我们只需要求 ( p , x , x ) ( x > p ) (p,x,x)(x>p) (p,x,x)(x>p) 和 ( x , x , z ) ( z > x ) (x,x,z)(z>x) (x,x,z)(z>x) 三元组中满足 x − p x - p x−p 和 z − x z - x z−x 包含的 2 2 2 的幂次为偶数的个数即可,可以考虑用01字典树来维护。
2 2 2 的幂次的奇偶只与数末尾 0 0 0 的个数的奇偶有关,而二进制减法中 x − y = z x - y = z x−y=z, z z z 末尾的第一个 1 1 1 出现在 x , y x,y x,y 从末尾开始第一个数字不同的数位,我们倒序将数的数位插入字典树,查询数目后就是简单的组合数学问题了。
时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),对于 n ≤ 5 e 5 , ∑ n ≤ 3 e 6 n\leq5e5,\sum n\leq3e6 n≤5e5,∑n≤3e6 的数据范围还是很轻松能通过的。
具体实现见代码,有详细注释。
代码
/*
1. 三元组 (x,y,z),(x<y<z),必胜。
2. 三元组 (x,y,z),(x=y/y=z),若 (z - x) 包含的 2 的幂次为偶数必败,否则必胜。
3. 三元组 (x,y,z),(x=y=z),必败。
*/
#include <bits/stdc++.h>
using namespace std;#define ll long long
const int N = 5e5 + 10;ll a[N];
int son[N * 62][2], cnt[N * 62], tot;
void clear(int p){if(son[p][0]) clear(son[p][0]);if(son[p][1]) clear(son[p][1]);son[p][0] = son[p][1] = cnt[p] = 0;
}void insert(ll x){int p = 0;for(int i = 0; i <= 60; i ++){ // 倒序插入int u = x >> i & 1;if(!son[p][u]) son[p][u] = ++ tot;p = son[p][u];cnt[p] ++;}
}ll search(ll x, int idx, int p, int ode){ // 查询的数x, 当前数位,字典树地址, 奇偶性ll sum = 0;int u = x >> idx & 1;if(son[p][!u] && !ode){ // 下一位数不同,且当前0的个数为偶数,即为差包含偶数次2的幂次,加入答案sum += cnt[son[p][!u]];}if(son[p][u]) sum += search(x, idx + 1, son[p][u], ode ^ 1); // 继续搜索return sum;
}ll C2(ll sum){ // C(sum, 2)return sum * (sum - 1) / 2LL;
}
ll C3(ll sum){ // C(sum, 3)return sum * (sum - 1) * (sum - 2) / 6LL;
}void solve(){int n;cin >> n;clear(0); tot = 0;for(int i = 1; i <= n; i ++){cin >> a[i];insert(a[i]);}sort(a + 1, a + 1 + n);ll ans = C3(n); // 总方案数for(int i = 1, r = 1; i <= n; i ++){while(r + 1 <= n && a[r + 1] == a[i]) r ++;ans -= C2(r - i + 1) * search(a[i], 0, 0, 0); // 情况2的必败数ans -= C3(r - i + 1); // 情况3的必败数i = r;}cout << ans;
}int main(){ios::sync_with_stdio(false);cin.tie(0); cout.tie(0);int t;cin >> t;for(int i = 1; i <= t; i ++){solve();if(i != t) cout << "\n";}return 0;
}
相关文章:
2023 ICPC 网络赛 第一场(补题:F)
7题罚时879, 队排235,校排79。 除了I题dp没注意空间限制第一发没有用滚动数组MLE,以及G题启发式合并脑抽用set当容器T一发,以及K没注意是平方的期望白wa4发这些应当避免的失误外,基本满意。剩下的题基本都是当时写不出…...
MySQL慢查询优化、日志收集定位排查、慢查询sql分析
MySQL慢查询日志收集、定位,慢查询分析、排查。 一 MySQL慢查询定位 1. 确定是否已开启慢查询日志 查看慢查询日志是否已经被开启: SHOW VARIABLES LIKE slow_query_log; 如果返回值是OFF,你需要开启它。 2. 开启慢查询日志 你可以临时在运…...
HZOJ-266:表达式计算
题目描述 给出一个表达式,其中运算符仅包含 ,-,*,/,^ 要求求出表达式的最终值。 数据可能会出现括号情况,还有可能出现多余括号情况,忽略多余括号,正常计算即可; 数据保证不会出现大于 max long int 的数据࿱…...

JavaScript学习小结
变量声明:使用var关键字,变量没有类型,但值有类型(弱类型语言) 数据类型: ①number ②string(单引号,双引号都可以表示字符串) ③boolean ④Object类型 ⑤undefine…...

MySQL学习笔记13
DISTINCT数据去重: 案例:获取tb_student学生表学员年龄的分布情况。 mysql> select * from tb_student; ------------------------------------------------- | id | name | age | gender | address | --------------------------…...
怎么获取外网ip地址
在网络连接中,每个设备都被分配一个唯一的IP地址,用于标识和定位该设备。其中,内部或局域网IP地址是在局域网内使用的,而外网IP地址则是与公共互联网通信时所使用的地址。 获取外网IP地址对于许多人来说可能是一个常见的需求&…...
算法 只出现一次的两个数字-(哈希+异或)
牛客网: BM52 题目: 数组中仅2个数字出现1次,其余出现2次 思路: 出现2次的数字异或结果为0,另外两个不同的数字异或结果res不为0,异或结果的二进制位必与其中一个相同,求出二进制位为1的pos, 遍历数组,所有此位置为1…...

外卖霸王餐小程序、H5、公众号版外卖系统源码
最新外卖霸王餐小程序、H5、微信公众号版外卖系统源码、霸王餐美团、饿了么系统,粉丝裂变玩源码下载,外卖cps小程序项目,外卖红包cps带好友返利佣金分销系统程序、饿了么美团联盟源码,外卖cps带分销返利后端源码,基于L…...
amlogic 机顶盒关闭DLNA 后,手机还能搜到盒子
S905L3 带有投屏的功能,并通过 com.droidlogic.mediacenter.dlna.MediaCenterService 服务的启动和停止来开启和关闭DLNA功能,但是在测试中发现机顶盒关闭DLNA后,手机还能搜索到盒子。我在复测中发现关闭后有时很难很久搜索到盒子,…...
@Autowire、@Recourse用啥?
在使用IDEA写Spring相关的项目的时候,在字段上使用Autowired注解时,总是会有一个波浪线提示:Field injection is not recommended. 这是为啥呢?今天就来一探究竟。 众所周知,在Spring里面有三种可选的注入方式…...
[linux] 过滤警告⚠️
如果你在Python脚本中输出和执行脚本文件时想要过滤掉警告信息,可以尝试以下方法: 使用warnings模块:导入warnings模块并设置warnings.filterwarnings("ignore"),这将会忽略所有的警告信息。在需要过滤警告的部分之前添…...
Linux必备操作系统命令大全
一、基础命令 pwd 命令 pwd命令用于显示当前所在的工作目录的全路径名称。该命令无需任何参数,只需在终端窗口中输入 pwd 命令即可使用。 cd 命令 cd命令用于更改当前工作目录。该命令需要一个参数:目标目录名称。例如,若要进入 Document…...
【rtp】VideoTimingExtension 扩展的解析和写入
VideoTimingExtension 扩展有13个字节,并非都是字符串类型 class VideoTimingExtension {public:using value_type = VideoSendTiming;static constexpr RTPExtensionType kId = kRtpExtensionVideoTiming;static constexpr uint8_t kValueSizeBytes = 13...

网络安全CTF比赛有哪些事?——《CTF那些事儿》告诉你
目录 前言 一、内容简介 二、读者对象 三、专家推荐 四、全书目录 前言 CTF比赛是快速提升网络安全实战技能的重要途径,已成为各个行业选拔网络安全人才的通用方法。但是,本书作者在从事CTF培训的过程中,发现存在几个突出的问题࿱…...

Winform直接与Wpf交互
Winform项目中,可以直接使用wpf中的自定义控件和窗体 测试环境: vistual studio 2017 window 10 一 winform直接使用wpf的自定义控件 步骤如下: 1 新建winfrom项目,名为WinFormDemo,默认有一个名为Form1的窗体…...

Uni-app 调用微信地图导航功能【有图】
前言 我们在使用uni-app时,有时候会遇到需要开发地图和导航的功能,这些方法其实微信小程序的API已经帮我们封装好了 详见:微信小程序开发文档 接下来我们就演示如何用uni-app来使用他们 使用 <template><view><button type…...
Golang slice 通过growslice调用nextslicecap计算扩容
先来看一段代码 code: e : []int64{1, 2, 3}fmt.Println("cap of e before:", cap(e))e append(e, 4, 5, 6, 7)fmt.Println("cap of e after:", cap(e))output:cap of e before: 3 cap of e after: 8 为什么容量是8? append了的4个元素&…...

HTTP 协商缓存 Last-Modified,If-Modified-Since
浏览器第一次跟服务器请求一个资源,服务器在返回这个资源的同时,在respone header加上Last-Modified属性(表示这个资源在服务器上的最后修改时间): ----------------------------------------------------------------…...

零基础教程:Yolov5模型改进-添加13种注意力机制
1.准备工作 先给出13种注意力机制的下载地址: https://github.com/z1069614715/objectdetection_script 2.加入注意力机制 1.以添加SimAM注意力机制为例(不需要接收通道数的注意力机制) 1.在models文件下新建py文件,取名叫Sim…...
vue截取地址参数
const getQueryValueFn () >{// 获取当前页面的URLconst currentURL window.location.href;//创建一个URL对象来解析当前URL。URL对象提供了方便的属性和方法来处理URL的各个部分const url new URL(currentURL);// 使用URLSearchParams获取查询参数const queryParams ne…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...

免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...