五、核支持向量机算法(NuSVC,Nu-Support Vector Classification)(有监督学习)
和支持向量分类(Nu-Support Vector Classification),与 SVC 类似,但使用一个参数来控制支持向量的数量,其实现基于libsvm
一、算法思路
本质都是SVM中的一种优化,原理都类似,详细算法思路可以参考博文:三、支持向量机算法(SVC,Support Vector Classification)(有监督学习)
二、官网API
官网API
class sklearn.svm.NuSVC(*, nu=0.5, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)
导包:from sklearn.svm import NuSVC
①边际误差分数nu
边际误差分数的上限和支持向量分数的下限,用来控制支持向量的数目和边际误差;nu范围应为(0,1],默认值为0.5
具体官网详情如下:
使用方法
NuSVC(nu=0.5)
②核函数kernel
‘linear’:线性核函数,速度快;只能处理数据集样本线性可分,不能处理线性不可分。
‘poly’:多项式核函数,可将数据集样本升维,从低维空间映射到高维空间;参数较多,计算量大
‘rbf’:高斯核函数,和多项式核函数一样,可将样本升维;相较于多项式核函数来说,参数较少;默认值
'sigmoid’:sigmoid 核函数;当选用 sigmoid 核函数时,SVM 可实现的是多层神经网络
‘precomputed’:核矩阵;使用用户给定的核函数矩阵(n*n)
也可以自定义自己的核函数,然后进行调用即可
具体官网详情如下:
使用方法
NuSVC(kernel='sigmoid')
③多项式核函数的阶数degree
多项式核函数的阶数;该参数只对多项式核函数(poly)有用;若是其他的核函数,系统会自动忽略该参数
具体官网详情如下:
使用方式
NuSVC(kernel='poly',degree=2)
④核系数gamma
rbf、poly 和 sigmoid核函数的核系数,该参数只针对这三个核函数,需要注意
‘scale’:默认值,具体的计算公式看下面的详细官网详情
‘auto’:具体的计算公式看下面的详细官网详情
或者是其他的浮点数均可
具体官网详情如下:
使用方式
NuSVC(gamma='auto')
⑤随机种子random_state
如果要是为了对比,需要控制变量的话,这里的随机种子最好设置为同一个整型数
具体官网详情如下:
使用方式
NuSVC(random_state=42)
⑥最终构建模型
NuSVC(nu=0.5,kernel=‘rbf’,gamma=‘auto’,random_state=42)
三、代码实现
①导包
这里需要评估、训练、保存和加载模型,以下是一些必要的包,若导入过程报错,pip安装即可
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import joblib
%matplotlib inline
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.svm import NuSVC
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
②加载数据集
数据集可以自己简单整个,csv格式即可,我这里使用的是6个自变量X和1个因变量Y
fiber = pd.read_csv("./fiber.csv")
fiber.head(5) #展示下头5条数据信息
③划分数据集
前六列是自变量X,最后一列是因变量Y
常用的划分数据集函数官网API:train_test_split
test_size
:测试集数据所占比例
train_size
:训练集数据所占比例
random_state
:随机种子
shuffle
:是否将数据进行打乱
因为我这里的数据集共48个,训练集0.75,测试集0.25,即训练集36个,测试集12个
X = fiber.drop(['Grade'], axis=1)
Y = fiber['Grade']X_train, X_test, y_train, y_test = train_test_split(X,Y,train_size=0.75,test_size=0.25,random_state=42,shuffle=True)print(X_train.shape) #(36,6)
print(y_train.shape) #(36,)
print(X_test.shape) #(12,6)
print(y_test.shape) #(12,)
④构建NuSVC模型
参数可以自己去尝试设置调整
nusvc = NuSVC(nu=0.5,kernel='rbf',gamma='auto',random_state=42)
⑤模型训练
就这么简单,一个fit函数就可以实现模型训练
nusvc.fit(X_train,y_train)
⑥模型评估
把测试集扔进去,得到预测的测试结果
y_pred = nusvc.predict(X_test)
看看预测结果和实际测试集结果是否一致,一致为1否则为0,取个平均值就是准确率
accuracy = np.mean(y_pred==y_test)
print(accuracy)
也可以通过score得分进行评估,计算的结果和思路都是一样的,都是看所有的数据集中模型猜对的概率,只不过这个score函数已经封装好了,当然传入的参数也不一样,需要导入accuracy_score才行,from sklearn.metrics import accuracy_score
score = nusvc.score(X_test,y_test)#得分
print(score)
⑦模型测试
拿到一条数据,使用训练好的模型进行评估
这里是六个自变量,我这里随机整个test = np.array([[16,18312.5,6614.5,2842.31,25.23,1147430.19]])
扔到模型里面得到预测结果,prediction = nusvc.predict(test)
看下预测结果是多少,是否和正确结果相同,print(prediction)
test = np.array([[16,18312.5,6614.5,2842.31,25.23,1147430.19]])
prediction = nusvc.predict(test)
print(prediction) #[2]
⑧保存模型
nusvc是模型名称,需要对应一致
后面的参数是保存模型的路径
joblib.dump(nusvc, './nusvc.model')#保存模型
⑨加载和使用模型
nusvc_yy = joblib.load('./nusvc.model')test = np.array([[11,99498,5369,9045.27,28.47,3827588.56]])#随便找的一条数据
prediction = nusvc_yy.predict(test)#带入数据,预测一下
print(prediction) #[4]
完整代码
模型训练和评估,不包含⑧⑨。
from sklearn.svm import NuSVC
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_splitfiber = pd.read_csv("./fiber.csv")
# 划分自变量和因变量
X = fiber.drop(['Grade'], axis=1)
Y = fiber['Grade']
#划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, Y, random_state=0)nusvc = NuSVC(nu=0.5,kernel='rbf',gamma='auto',random_state=42)
nusvc.fit(X_train,y_train)#模型拟合
y_pred = nusvc.predict(X_test)#模型预测结果
accuracy = np.mean(y_pred==y_test)#准确度
score = nusvc.score(X_test,y_test)#得分
print(accuracy)
print(score)test = np.array([[23,97215.5,22795.5,2613.09,29.72,1786141.62]])#随便找的一条数据
prediction = nusvc.predict(test)#带入数据,预测一下
print(prediction)
相关文章:

五、核支持向量机算法(NuSVC,Nu-Support Vector Classification)(有监督学习)
和支持向量分类(Nu-Support Vector Classification),与 SVC 类似,但使用一个参数来控制支持向量的数量,其实现基于libsvm 一、算法思路 本质都是SVM中的一种优化,原理都类似,详细算法思路可以参考博文:三…...

个人废品回收小程序制作步骤详解
在当今的环保时代,个人废品回收小程序的发展显得尤为重要。为了满足这一需求,本文将详细介绍如何制作一个个人废品回收小程序。 第一步,进入乔拓云网后台,点击【轻应用小程序】进入设计小程序页面。在这个页面,你可以看…...

Python爬虫自动切换爬虫ip的完美方案
在进行网络爬虫时,经常会遇到需要切换爬虫ip的情况,以绕过限制或保护自己的爬虫请求。今天,我将为你介绍Python爬虫中自动切换爬虫ip的终极方案,让你的爬虫更加高效稳定。 步骤一:准备爬虫ip池 首先,你需要…...

IDEA新建.xml文件显示为普通文本
情况如下: 1. 在XML文件中添加*.xml的文件名模式 2. 在文本中,选中*.xml进行删除...
linux的三剑客
1、grep命令 grep全称是Global Regular Expression Print,表示全局正则表达式版本,它的使用权限是所有用户。它是Linux系统中一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来。 shell脚本中也经常使用g…...
微信小程序部分知识点总结【2】
微信小程序的原理是什么 微信小程序的原理是基于一种轻量级的应用程序模型,它允许开发者在微信客户端内部创建和运行应用程序。微信小程序采用了类似网页的技术栈,主要由两部分组成:前端和后端。 前端部分使用HTML、CSS和JavaScript等标准的…...

基于springboot+vue的云南旅游网(前后端分离)
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...
后缀表达式求值
后缀表达式,又称逆波兰式,指的是不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行。 运用后缀表达式进行计算的具体做法: 建立一个操作数栈S。然后从左到右读表达…...

基于springboot+vue的信息技术知识赛系统
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...

基于YOLOv8模型的垃圾满溢检测系统(PyTorch+Pyside6+YOLOv8模型)
摘要:基于YOLOv8模型的垃圾满溢检测系统可用于日常生活中检测与定位车辆垃圾(garbage)、垃圾桶(garbage_bin)和垃圾满溢(overflow)目标,利用深度学习算法可实现图片、视频、摄像头等…...
面试算法14:字符串中的变位词
题目 输入字符串s1和s2,如何判断字符串s2中是否包含字符串s1的某个变位词?如果字符串s2中包含字符串s1的某个变位词,则字符串s1至少有一个变位词是字符串s2的子字符串。假设两个字符串中只包含英文小写字母。例如,字符串s1为&quo…...

中国社科院大学-美国杜兰大学金融管理硕士暨能源管理硕士项目2023年毕业典礼
中国社科院大学-美国杜兰大学金融管理硕士暨能源管理硕士项目2023年毕业典礼 2023年9月16日,中国社会科学院大学-美国杜兰大学金融管理硕士项目暨能源管理硕士项目2023年毕业典礼在我校望京校区成功举办。 张波副校长致辞 中国社会科学院大学副校长张波教授、杜兰大…...

蓝桥杯 题库 简单 每日十题 day10
01 最少砝码 最少砝码 问题描述 你有一架天平。现在你要设计一套砝码,使得利用这些砝码 可以出任意小于等于N的正整数重量。那么这套砝码最少需要包含多少个砝码? 注意砝码可以放在天平两边。 输入格式 输入包含一个正整数N。 输出格式 输出一个整数代表…...

聊聊并发编程——多线程之synchronized
目录 一.多线程下数据不一致问题 二.锁和synchronized 2.1 并发编程三大特性 2.2引入锁概念 三.synchronized的锁实现原理 3.1 monitorenter和monitorexit 3.2synchronized 锁的升级 3.2.1偏向锁的获取和撤销 3.2.2轻量级锁的加锁和解锁 自适应自旋锁 轻量级锁的解锁…...

CompletableFuture-通用异步编程
演示Completable接口完全可以代替Future接口: CompletableFuture减少阻塞和轮询,可以传入回调对象,当异步任务完成或者发生异常时,自动 调用回调对象的回调方法。 package com.nanjing.gulimall.zhouyimo.test;import java.util…...

Vue3 封装 element-plus 图标选择器
一、实现效果 二、实现步骤 2.1. 全局注册 icon 组件 // main.ts import App from ./App.vue; import { createApp } from vue; import * as ElementPlusIconsVue from element-plus/icons-vueconst app createApp(App);// 全局挂载和注册 element-plus 的所有 icon app.con…...

超详细C语言实现——通讯录
目录 一、介绍 二、源代码 test.c: Contact.c: Contact.h: 代码运行结果: 三、开始实现 1.基本框架: 2.添加联系人: 3.显示联系人信息: 4.删除联系人信息: 5.查看指定联系人信息: 6.修改联系人…...

zabbix监控添加监控项及其监控Mysql、nginx
本届主要介绍添加监控项和修改中文乱码,监控mysql,nginx服务 一、zabbix监控添加监控项 1、配置agent服务器 在配置文件中添加: UserParameterlsq_userd,free -m | grep Mem | awk { print $3 } 服务器内存使用量 UserParameterdu,…...
Docker 部署 MongoDB 服务
拉取最新版本的 MongoDB 镜像: $ sudo docker pull mongo:latest在本地预先创建好 db 和 configdb 目录, 用于映射 MongoDB 容器内的 /data/db 和 /data/configdb 目录。 使用以下命令来运行 MongoDB 容器: $ sudo docker run -itd --name mongo --privilegedtru…...

QUIC协议报文解析(三)
在前面的两篇文字里我们简单介绍了QUIC的发展历史,优点以及QUIC协议的连接原理。本篇文章将会以具体的QUIC报文为例,详细介绍QUIC报文的结构以及各个字段的含义。 早期QUIC版本众多,主要有谷歌家的gQUIC,以及IETF致力于将QUIC标准…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...
[USACO23FEB] Bakery S
题目描述 Bessie 开了一家面包店! 在她的面包店里,Bessie 有一个烤箱,可以在 t C t_C tC 的时间内生产一块饼干或在 t M t_M tM 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC,tM≤109)。由于空间…...
java+webstock
maven依赖 <dependency><groupId>org.java-websocket</groupId><artifactId>Java-WebSocket</artifactId><version>1.3.5</version></dependency><dependency><groupId>org.apache.tomcat.websocket</groupId&…...
uniapp获取当前位置和经纬度信息
1.1. 获取当前位置和经纬度信息(需要配置高的SDK) 调用uni-app官方API中的uni.chooseLocation(),即打开地图选择位置。 <button click"getAddress">获取定位</button> const getAddress () > {uni.chooseLocatio…...

2025-06-01-Hive 技术及应用介绍
Hive 技术及应用介绍 参考资料 Hive 技术原理Hive 架构及应用介绍Hive - 小海哥哥 de - 博客园https://cwiki.apache.org/confluence/display/Hive/Home(官方文档) Apache Hive 是基于 Hadoop 构建的数据仓库工具,它为海量结构化数据提供类 SQL 的查询能力…...

前端异步编程全场景解读
前端异步编程是现代Web开发的核心,它解决了浏览器单线程执行带来的UI阻塞问题。以下从多个维度进行深度解析: 一、异步编程的核心概念 JavaScript的执行环境是单线程的,这意味着在同一时间只能执行一个任务。为了不阻塞主线程,J…...

信息收集:从图像元数据(隐藏信息收集)到用户身份的揭秘 --- 7000
目录 🌐 访问Web服务 💻 分析源代码 ⬇️ 下载图片并保留元数据 🔍 提取元数据(重点) 👤 生成用户名列表 🛠️ 技术原理 图片元数据(EXIF 数据) Username-Anarch…...