当前位置: 首页 > news >正文

五、核支持向量机算法(NuSVC,Nu-Support Vector Classification)(有监督学习)

和支持向量分类(Nu-Support Vector Classification),与 SVC 类似,但使用一个参数来控制支持向量的数量,其实现基于libsvm

一、算法思路

本质都是SVM中的一种优化,原理都类似,详细算法思路可以参考博文:三、支持向量机算法(SVC,Support Vector Classification)(有监督学习)

二、官网API

官网API

class sklearn.svm.NuSVC(*, nu=0.5, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)

导包:from sklearn.svm import NuSVC

①边际误差分数nu

边际误差分数的上限和支持向量分数的下限,用来控制支持向量的数目和边际误差;nu范围应为(0,1],默认值为0.5

具体官网详情如下:
在这里插入图片描述

使用方法

NuSVC(nu=0.5)

②核函数kernel

linear’:线性核函数,速度快;只能处理数据集样本线性可分,不能处理线性不可分。
poly’:多项式核函数,可将数据集样本升维,从低维空间映射到高维空间;参数较多,计算量大
rbf’:高斯核函数,和多项式核函数一样,可将样本升维;相较于多项式核函数来说,参数较少;默认值
'sigmoid’:sigmoid 核函数;当选用 sigmoid 核函数时,SVM 可实现的是多层神经网络
precomputed’:核矩阵;使用用户给定的核函数矩阵(n*n)
也可以自定义自己的核函数,然后进行调用即可

具体官网详情如下:
在这里插入图片描述

使用方法

NuSVC(kernel='sigmoid')

③多项式核函数的阶数degree

多项式核函数的阶数;该参数只对多项式核函数(poly)有用;若是其他的核函数,系统会自动忽略该参数

具体官网详情如下:
在这里插入图片描述

使用方式

NuSVC(kernel='poly',degree=2)

④核系数gamma

rbf、poly 和 sigmoid核函数的核系数,该参数只针对这三个核函数,需要注意
scale’:默认值,具体的计算公式看下面的详细官网详情
auto’:具体的计算公式看下面的详细官网详情
或者是其他的浮点数均可

具体官网详情如下:
在这里插入图片描述

使用方式

NuSVC(gamma='auto')

⑤随机种子random_state

如果要是为了对比,需要控制变量的话,这里的随机种子最好设置为同一个整型数

具体官网详情如下:
在这里插入图片描述

使用方式

NuSVC(random_state=42)

⑥最终构建模型

NuSVC(nu=0.5,kernel=‘rbf’,gamma=‘auto’,random_state=42)

三、代码实现

①导包

这里需要评估、训练、保存和加载模型,以下是一些必要的包,若导入过程报错,pip安装即可

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import joblib
%matplotlib inline
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.svm import NuSVC
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

②加载数据集

数据集可以自己简单整个,csv格式即可,我这里使用的是6个自变量X和1个因变量Y
在这里插入图片描述

fiber = pd.read_csv("./fiber.csv")
fiber.head(5) #展示下头5条数据信息

在这里插入图片描述

③划分数据集

前六列是自变量X,最后一列是因变量Y

常用的划分数据集函数官网API:train_test_split
在这里插入图片描述
test_size:测试集数据所占比例
train_size:训练集数据所占比例
random_state:随机种子
shuffle:是否将数据进行打乱
因为我这里的数据集共48个,训练集0.75,测试集0.25,即训练集36个,测试集12个

X = fiber.drop(['Grade'], axis=1)
Y = fiber['Grade']X_train, X_test, y_train, y_test = train_test_split(X,Y,train_size=0.75,test_size=0.25,random_state=42,shuffle=True)print(X_train.shape) #(36,6)
print(y_train.shape) #(36,)
print(X_test.shape) #(12,6)
print(y_test.shape) #(12,)

④构建NuSVC模型

参数可以自己去尝试设置调整

nusvc = NuSVC(nu=0.5,kernel='rbf',gamma='auto',random_state=42)

⑤模型训练

就这么简单,一个fit函数就可以实现模型训练

nusvc.fit(X_train,y_train)

⑥模型评估

把测试集扔进去,得到预测的测试结果

y_pred = nusvc.predict(X_test)

看看预测结果和实际测试集结果是否一致,一致为1否则为0,取个平均值就是准确率

accuracy = np.mean(y_pred==y_test)
print(accuracy)

也可以通过score得分进行评估,计算的结果和思路都是一样的,都是看所有的数据集中模型猜对的概率,只不过这个score函数已经封装好了,当然传入的参数也不一样,需要导入accuracy_score才行,from sklearn.metrics import accuracy_score

score = nusvc.score(X_test,y_test)#得分
print(score)

⑦模型测试

拿到一条数据,使用训练好的模型进行评估
这里是六个自变量,我这里随机整个test = np.array([[16,18312.5,6614.5,2842.31,25.23,1147430.19]])
扔到模型里面得到预测结果,prediction = nusvc.predict(test)
看下预测结果是多少,是否和正确结果相同,print(prediction)

test = np.array([[16,18312.5,6614.5,2842.31,25.23,1147430.19]])
prediction = nusvc.predict(test)
print(prediction) #[2]

⑧保存模型

nusvc是模型名称,需要对应一致
后面的参数是保存模型的路径

joblib.dump(nusvc, './nusvc.model')#保存模型

⑨加载和使用模型

nusvc_yy = joblib.load('./nusvc.model')test = np.array([[11,99498,5369,9045.27,28.47,3827588.56]])#随便找的一条数据
prediction = nusvc_yy.predict(test)#带入数据,预测一下
print(prediction) #[4]

完整代码

模型训练和评估,不包含⑧⑨。

from sklearn.svm import NuSVC
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_splitfiber = pd.read_csv("./fiber.csv")
# 划分自变量和因变量
X = fiber.drop(['Grade'], axis=1)
Y = fiber['Grade']
#划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, Y, random_state=0)nusvc = NuSVC(nu=0.5,kernel='rbf',gamma='auto',random_state=42)
nusvc.fit(X_train,y_train)#模型拟合
y_pred = nusvc.predict(X_test)#模型预测结果
accuracy = np.mean(y_pred==y_test)#准确度
score = nusvc.score(X_test,y_test)#得分
print(accuracy)
print(score)test = np.array([[23,97215.5,22795.5,2613.09,29.72,1786141.62]])#随便找的一条数据
prediction = nusvc.predict(test)#带入数据,预测一下
print(prediction)

相关文章:

五、核支持向量机算法(NuSVC,Nu-Support Vector Classification)(有监督学习)

和支持向量分类(Nu-Support Vector Classification),与 SVC 类似,但使用一个参数来控制支持向量的数量,其实现基于libsvm 一、算法思路 本质都是SVM中的一种优化,原理都类似,详细算法思路可以参考博文:三…...

个人废品回收小程序制作步骤详解

在当今的环保时代,个人废品回收小程序的发展显得尤为重要。为了满足这一需求,本文将详细介绍如何制作一个个人废品回收小程序。 第一步,进入乔拓云网后台,点击【轻应用小程序】进入设计小程序页面。在这个页面,你可以看…...

Python爬虫自动切换爬虫ip的完美方案

在进行网络爬虫时,经常会遇到需要切换爬虫ip的情况,以绕过限制或保护自己的爬虫请求。今天,我将为你介绍Python爬虫中自动切换爬虫ip的终极方案,让你的爬虫更加高效稳定。 步骤一:准备爬虫ip池 首先,你需要…...

IDEA新建.xml文件显示为普通文本

情况如下: 1. 在XML文件中添加*.xml的文件名模式 2. 在文本中,选中*.xml进行删除...

linux的三剑客

1、grep命令 grep全称是Global Regular Expression Print,表示全局正则表达式版本,它的使用权限是所有用户。它是Linux系统中一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来。 shell脚本中也经常使用g…...

微信小程序部分知识点总结【2】

微信小程序的原理是什么 微信小程序的原理是基于一种轻量级的应用程序模型,它允许开发者在微信客户端内部创建和运行应用程序。微信小程序采用了类似网页的技术栈,主要由两部分组成:前端和后端。 前端部分使用HTML、CSS和JavaScript等标准的…...

基于springboot+vue的云南旅游网(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...

后缀表达式求值

后缀表达式,又称逆波兰式,指的是不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行。 运用后缀表达式进行计算的具体做法: 建立一个操作数栈S。然后从左到右读表达…...

基于springboot+vue的信息技术知识赛系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...

基于YOLOv8模型的垃圾满溢检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型的垃圾满溢检测系统可用于日常生活中检测与定位车辆垃圾(garbage)、垃圾桶(garbage_bin)和垃圾满溢(overflow)目标,利用深度学习算法可实现图片、视频、摄像头等…...

面试算法14:字符串中的变位词

题目 输入字符串s1和s2,如何判断字符串s2中是否包含字符串s1的某个变位词?如果字符串s2中包含字符串s1的某个变位词,则字符串s1至少有一个变位词是字符串s2的子字符串。假设两个字符串中只包含英文小写字母。例如,字符串s1为&quo…...

中国社科院大学-美国杜兰大学金融管理硕士暨能源管理硕士项目2023年毕业典礼

中国社科院大学-美国杜兰大学金融管理硕士暨能源管理硕士项目2023年毕业典礼 2023年9月16日,中国社会科学院大学-美国杜兰大学金融管理硕士项目暨能源管理硕士项目2023年毕业典礼在我校望京校区成功举办。 张波副校长致辞 中国社会科学院大学副校长张波教授、杜兰大…...

蓝桥杯 题库 简单 每日十题 day10

01 最少砝码 最少砝码 问题描述 你有一架天平。现在你要设计一套砝码,使得利用这些砝码 可以出任意小于等于N的正整数重量。那么这套砝码最少需要包含多少个砝码? 注意砝码可以放在天平两边。 输入格式 输入包含一个正整数N。 输出格式 输出一个整数代表…...

聊聊并发编程——多线程之synchronized

目录 一.多线程下数据不一致问题 二.锁和synchronized 2.1 并发编程三大特性 2.2引入锁概念 三.synchronized的锁实现原理 3.1 monitorenter和monitorexit 3.2synchronized 锁的升级 3.2.1偏向锁的获取和撤销 3.2.2轻量级锁的加锁和解锁 自适应自旋锁 轻量级锁的解锁…...

CompletableFuture-通用异步编程

演示Completable接口完全可以代替Future接口: CompletableFuture减少阻塞和轮询,可以传入回调对象,当异步任务完成或者发生异常时,自动 调用回调对象的回调方法。 package com.nanjing.gulimall.zhouyimo.test;import java.util…...

Vue3 封装 element-plus 图标选择器

一、实现效果 二、实现步骤 2.1. 全局注册 icon 组件 // main.ts import App from ./App.vue; import { createApp } from vue; import * as ElementPlusIconsVue from element-plus/icons-vueconst app createApp(App);// 全局挂载和注册 element-plus 的所有 icon app.con…...

超详细C语言实现——通讯录

目录 一、介绍 二、源代码 test.c: Contact.c: Contact.h: 代码运行结果: 三、开始实现 1.基本框架: 2.添加联系人: 3.显示联系人信息: 4.删除联系人信息: 5.查看指定联系人信息: 6.修改联系人…...

zabbix监控添加监控项及其监控Mysql、nginx

本届主要介绍添加监控项和修改中文乱码,监控mysql,nginx服务 一、zabbix监控添加监控项 1、配置agent服务器 在配置文件中添加: UserParameterlsq_userd,free -m | grep Mem | awk { print $3 } 服务器内存使用量 UserParameterdu,…...

Docker 部署 MongoDB 服务

拉取最新版本的 MongoDB 镜像: $ sudo docker pull mongo:latest在本地预先创建好 db 和 configdb 目录, 用于映射 MongoDB 容器内的 /data/db 和 /data/configdb 目录。 使用以下命令来运行 MongoDB 容器: $ sudo docker run -itd --name mongo --privilegedtru…...

QUIC协议报文解析(三)

在前面的两篇文字里我们简单介绍了QUIC的发展历史,优点以及QUIC协议的连接原理。本篇文章将会以具体的QUIC报文为例,详细介绍QUIC报文的结构以及各个字段的含义。 早期QUIC版本众多,主要有谷歌家的gQUIC,以及IETF致力于将QUIC标准…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...