当前位置: 首页 > news >正文

基于YOLOv8模型的垃圾满溢检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型的垃圾满溢检测系统可用于日常生活中检测与定位车辆垃圾(garbage)、垃圾桶(garbage_bin)和垃圾满溢(overflow)目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种垃圾满溢检测模型,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的垃圾满溢检测数据集手动标注了垃圾(garbage)、垃圾桶(garbage_bin)和垃圾满溢(overflow)这3个类别,数据集总计3349张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的人体摔倒行为检测识别数据集包含训练集2704张图片,验证集645张图片,选取部分数据部分样本数据集如下图所示。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测识别系统请关注笔者的微信公众号 BestSongC。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示
在这里插入图片描述

相关文章:

基于YOLOv8模型的垃圾满溢检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型的垃圾满溢检测系统可用于日常生活中检测与定位车辆垃圾(garbage)、垃圾桶(garbage_bin)和垃圾满溢(overflow)目标,利用深度学习算法可实现图片、视频、摄像头等…...

面试算法14:字符串中的变位词

题目 输入字符串s1和s2,如何判断字符串s2中是否包含字符串s1的某个变位词?如果字符串s2中包含字符串s1的某个变位词,则字符串s1至少有一个变位词是字符串s2的子字符串。假设两个字符串中只包含英文小写字母。例如,字符串s1为&quo…...

中国社科院大学-美国杜兰大学金融管理硕士暨能源管理硕士项目2023年毕业典礼

中国社科院大学-美国杜兰大学金融管理硕士暨能源管理硕士项目2023年毕业典礼 2023年9月16日,中国社会科学院大学-美国杜兰大学金融管理硕士项目暨能源管理硕士项目2023年毕业典礼在我校望京校区成功举办。 张波副校长致辞 中国社会科学院大学副校长张波教授、杜兰大…...

蓝桥杯 题库 简单 每日十题 day10

01 最少砝码 最少砝码 问题描述 你有一架天平。现在你要设计一套砝码,使得利用这些砝码 可以出任意小于等于N的正整数重量。那么这套砝码最少需要包含多少个砝码? 注意砝码可以放在天平两边。 输入格式 输入包含一个正整数N。 输出格式 输出一个整数代表…...

聊聊并发编程——多线程之synchronized

目录 一.多线程下数据不一致问题 二.锁和synchronized 2.1 并发编程三大特性 2.2引入锁概念 三.synchronized的锁实现原理 3.1 monitorenter和monitorexit 3.2synchronized 锁的升级 3.2.1偏向锁的获取和撤销 3.2.2轻量级锁的加锁和解锁 自适应自旋锁 轻量级锁的解锁…...

CompletableFuture-通用异步编程

演示Completable接口完全可以代替Future接口: CompletableFuture减少阻塞和轮询,可以传入回调对象,当异步任务完成或者发生异常时,自动 调用回调对象的回调方法。 package com.nanjing.gulimall.zhouyimo.test;import java.util…...

Vue3 封装 element-plus 图标选择器

一、实现效果 二、实现步骤 2.1. 全局注册 icon 组件 // main.ts import App from ./App.vue; import { createApp } from vue; import * as ElementPlusIconsVue from element-plus/icons-vueconst app createApp(App);// 全局挂载和注册 element-plus 的所有 icon app.con…...

超详细C语言实现——通讯录

目录 一、介绍 二、源代码 test.c: Contact.c: Contact.h: 代码运行结果: 三、开始实现 1.基本框架: 2.添加联系人: 3.显示联系人信息: 4.删除联系人信息: 5.查看指定联系人信息: 6.修改联系人…...

zabbix监控添加监控项及其监控Mysql、nginx

本届主要介绍添加监控项和修改中文乱码,监控mysql,nginx服务 一、zabbix监控添加监控项 1、配置agent服务器 在配置文件中添加: UserParameterlsq_userd,free -m | grep Mem | awk { print $3 } 服务器内存使用量 UserParameterdu,…...

Docker 部署 MongoDB 服务

拉取最新版本的 MongoDB 镜像: $ sudo docker pull mongo:latest在本地预先创建好 db 和 configdb 目录, 用于映射 MongoDB 容器内的 /data/db 和 /data/configdb 目录。 使用以下命令来运行 MongoDB 容器: $ sudo docker run -itd --name mongo --privilegedtru…...

QUIC协议报文解析(三)

在前面的两篇文字里我们简单介绍了QUIC的发展历史,优点以及QUIC协议的连接原理。本篇文章将会以具体的QUIC报文为例,详细介绍QUIC报文的结构以及各个字段的含义。 早期QUIC版本众多,主要有谷歌家的gQUIC,以及IETF致力于将QUIC标准…...

pytorch迁移学习训练图像分类

pytorch迁移学习训练图像分类 一、环境配置二、迁移学习关键代码三、完整代码四、结果对比 代码和图片等资源均来源于哔哩哔哩up主:同济子豪兄 讲解视频:Pytorch迁移学习训练自己的图像分类模型 一、环境配置 1,安装所需的包 pip install …...

SQL 如何提取多级分类目录

前言 POI数据处理,原始数据为csv格式,整理入库至PostGreSQL,本例使用PostGreSQL13版本。 一、POI POI(一般作为Point of Interest的缩写,也有Point of Information的说法),通常称作兴趣点&am…...

从中序遍历和后序遍历构建二叉树

题目描述 106. 从中序与后序遍历序列构造二叉树 中等 1.1K 相关企业 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1…...

《计算机视觉中的多视图几何》笔记(11)

11 Computation of the Fundamental Matrix F F F 本章讲述如何用数值方法在已知若干对应点的情况下求解基本矩阵 F F F。 文章目录 11 Computation of the Fundamental Matrix F F F11.1 Basic equations11.1.1 The singularity constraint11.1.2 The minimum case – sev…...

UE5 ChaosVehicles载具研究

一、基本组成 载具Actor类名称:WheeledVehiclePawn Actor最原始的结构 官方增加了两个摇臂相机,可以像驾驶游戏那样切换多机位、旋转观察 选择骨骼网格体、动画蓝图类、开启物理模拟 二、SportsCar_Pawn 角阻尼:物体旋转的阻力。数值越大…...

数据通信——应用层(域名系统)

引言 TCP到此就告一段落,这也意味着传输层结束了,紧随其后的就是TCP/IP五层架构的应用层。操作系统、编程语言、用户的可视化界面等等都要通过应用层来体现。应用层和我们息息相关,我们使用电子设备娱乐或办公时,接触到的就是应用…...

Visual Studio 更新:远程文件管理器

Visual Studio 中的远程文件管理器可以用来访问远程机器上的文件和文件夹,通过 Visual Studio 自带的连接管理器,可以实现不离开开发环境直接访问远程系统,这确实十分方便。 自从此功能发布以来,VS 开发团队努力工作,…...

ChatGPT追祖寻宗:GPT-3技术报告要点解读

论文地址:Language Models are Few-Shot Learners 往期相关文章: ChatGPT追祖寻宗:GPT-1论文要点解读_五点钟科技的博客-CSDN博客ChatGPT追祖寻宗:GPT-2论文要点解读_五点钟科技的博客-CSDN博客 本文的标题之所以取名技术报告而不…...

java easyexcel 导出多级表头

maven <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>${easyexcel.version}</version> </dependency> 导出行的对象 import com.alibaba.excel.annotation.ExcelIgnore; import …...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗&#xff1f; 在ComfyUI中实现图生视频并延长到5秒&#xff0c;需要结合多个扩展和技巧。以下是完整解决方案&#xff1a; 核心工作流配置&#xff08;24fps下5秒120帧&#xff09; #mermaid-svg-yP…...

五子棋测试用例

一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏&#xff0c;有着深厚的文化底蕴。通过将五子棋制作成网页游戏&#xff0c;可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家&#xff0c;都可以通过网页五子棋感受到东方棋类…...

Xcode 16 集成 cocoapods 报错

基于 Xcode 16 新建工程项目&#xff0c;集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...