当前位置: 首页 > news >正文

OpenAI官方吴达恩《ChatGPT Prompt Engineering 提示词工程师》(7)聊天机器人 / ChatBot

聊天机器人 / ChatBot

使用大型语言模型来构建你的自定义聊天机器人
在本视频中,你将学习使用OpenAI ChatCompletions格式的组件构建一个机器人。

环境准备

首先,我们将像往常一样设置OpenAI Python包。

import os
import openai
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env fileopenai.api_key  = os.getenv('OPENAI_API_KEY')

定义函数

def get_completion(prompt, model="gpt-3.5-turbo"):messages = [{"role": "user", "content": prompt}]response = openai.ChatCompletion.create(model=model,messages=messages,temperature=0, # this is the degree of randomness of the model's output)return response.choices[0].message["content"]def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0):response = openai.ChatCompletion.create(model=model,messages=messages,temperature=temperature, # this is the degree of randomness of the model's output)
#     print(str(response.choices[0].message))return response.choices[0].message["content"]


你的消息就是用户消息
ChatGPT的消息就是助手消息
系统消息有助于设置助手的行为和角色,它在某种程度上是对话的高级指令。所以你可以把它想象成在助手耳边窃窃私语,引导助手的反应,而用户却没有意识到系统消息。
下面是一个例子,系统消息提示你是一个说话像莎士比亚的助手,用户说你讲一个笑话,助手说为什么鸡要过马路?用户信息是,我不知道。调用函数后回答是“到达另一边,公平地说,夫人,这是一个古老的经典,永远不会失败。”

messages =  [  
{'role':'system', 'content':'You are an assistant that speaks like Shakespeare.'},    
{'role':'user', 'content':'tell me a joke'},   
{'role':'assistant', 'content':'Why did the chicken cross the road'},   
{'role':'user', 'content':'I don't know'}  ]response = get_completion_from_messages(messages, temperature=1)
print(response)
"""
To get to the other side, sire! 'Tis a classic jest, known by many a bard.
"""

下面的例子,助手消息是,你是一个友好的聊天机器人,第一条用户消息是,嗨,我的名字是Isa。我们想,嗯,获取第一条用户消息。所以,让我们执行这个。第一条助手消息。所以,第一条消息是,你好Isa,很高兴见到你。我今天可以如何帮助你?

messages =  [  
{'role':'system', 'content':'You are friendly chatbot.'},    
{'role':'user', 'content':'Yes,  can you remind me, What is my name?'}  ]
response = get_completion_from_messages(messages, temperature=1)
print(response)
"""
I'm sorry, but as a chatbot, I do not have access to information about your personal details such as your name. However, you can tell me your name and we can continue our conversation.
"""

对话必须要有上下文,不然模型不知道。比如模型不知道你叫什么名字。

messages =  [  
{'role':'system', 'content':'You are friendly chatbot.'},    
{'role':'user', 'content':'Yes,  can you remind me, What is my name?'}  ]
response = get_completion_from_messages(messages, temperature=1)
print(response)
"""
I'm sorry, but as a chatbot, I do not have access to information about your personal details such as your name. However, you can tell me your name and we can continue our conversation.
"""

如果有上下文就可以提取

messages =  [  
{'role':'system', 'content':'You are friendly chatbot.'},
{'role':'user', 'content':'Hi, my name is Isa'},
{'role':'assistant', 'content': "Hi Isa! It's nice to meet you. \
Is there anything I can help you with today?"},
{'role':'user', 'content':'Yes, you can remind me, What is my name?'}  ]
response = get_completion_from_messages(messages, temperature=1)
print(response)
"""
Of course, your name is Isa.
"""

订单机器人

你要构建你自己的聊天机器人orderbot,自动化收集用户提示和助手响应,就是把用户回应自动的添加进去形成上下文。

def collect_messages(_):prompt = inp.value_inputinp.value = ''context.append({'role':'user', 'content':f"{prompt}"})response = get_completion_from_messages(context) context.append({'role':'assistant', 'content':f"{response}"})panels.append(pn.Row('User:', pn.pane.Markdown(prompt, width=600)))panels.append(pn.Row('Assistant:', pn.pane.Markdown(response, width=600, style={'background-color': '#F6F6F6'})))return pn.Column(*panels)

具体的询问顺序:
你是订单机器人,一个为比萨饼餐厅收集订单的自动化服务。
你首先问候顾客,然后收集订单,然后询问是提货还是送货。
你等待收集整个订单,然后总结一下,最后一次检查客户是否想要添加任何其他东西。
如果是送货,你可以要求一个地址。
最后,你收取付款。确保澄清所有选项、额外费用和尺寸,以唯一地识别菜单中的项目。
你以简短、非常对话、友好的方式回应。菜单包括,然后我们有菜单。

import panel as pn  # GUI
pn.extension()panels = [] # collect display context = [ {'role':'system', 'content':"""
You are OrderBot, an automated service to collect orders for a pizza restaurant. \
You first greet the customer, then collects the order, \
and then asks if it's a pickup or delivery. \
You wait to collect the entire order, then summarize it and check for a final \
time if the customer wants to add anything else. \
If it's a delivery, you ask for an address. \
Finally you collect the payment.\
Make sure to clarify all options, extras and sizes to uniquely \
identify the item from the menu.\
You respond in a short, very conversational friendly style. \
The menu includes \
pepperoni pizza  12.95, 10.00, 7.00 \
cheese pizza   10.95, 9.25, 6.50 \
eggplant pizza   11.95, 9.75, 6.75 \
fries 4.50, 3.50 \
greek salad 7.25 \
Toppings: \
extra cheese 2.00, \
mushrooms 1.50 \
sausage 3.00 \
canadian bacon 3.50 \
AI sauce 1.50 \
peppers 1.00 \
Drinks: \
coke 3.00, 2.00, 1.00 \
sprite 3.00, 2.00, 1.00 \
bottled water 5.00 \
"""} ]  # accumulate messagesinp = pn.widgets.TextInput(value="Hi", placeholder='Enter text here…')
button_conversation = pn.widgets.Button(name="Chat!")interactive_conversation = pn.bind(collect_messages, button_conversation)dashboard = pn.Column(inp,pn.Row(button_conversation),pn.panel(interactive_conversation, loading_indicator=True, height=300),
)dashboard
"""
[出现一个人机交互界面]
"""

 

要求模型创建一个JSON摘要,我们可以根据对话发送到订单系统。

messages =  context.copy()
messages.append(
{'role':'system', 'content':'create a json summary of the previous food order. Itemize the price for each item\The fields should be 1) pizza, include size 2) list of toppings 3) list of drinks, include size   4) list of sides include size  5)total price '},    
)#The fields should be 1) pizza, price 2) list of toppings 3) list of drinks, include size include price  4) list of sides include size include price, 5)total price '},    response = get_completion_from_messages(messages, temperature=0)
print(response)"""
Sure, here's a JSON summary of your order:···
{"pizza": {"type": "意大利辣香肠披萨","size": "中号","price": 12.95},"toppings": [{"type": "加拿大培根","price": 3.50},{"type": "蘑菇","price": 1.50},{"type": "彩椒","price": 1.00}],"drinks": [{"type": "可乐","size": "中杯","price": 3.00}],"sides": [],"total_price": 18.95
}
···
"""

温度值这里是0

相关文章:

OpenAI官方吴达恩《ChatGPT Prompt Engineering 提示词工程师》(7)聊天机器人 / ChatBot

聊天机器人 / ChatBot 使用大型语言模型来构建你的自定义聊天机器人 在本视频中,你将学习使用OpenAI ChatCompletions格式的组件构建一个机器人。 环境准备 首先,我们将像往常一样设置OpenAI Python包。 import os import openai from dotenv import…...

公司监控员工电脑用什么软件?应该怎么选?

在当今的数字化时代,企业需要对其员工的活动进行适当的监控,以确保企业的信息安全,维护企业的正常运作,并且保证员工的工作效率。然而,如何在尊重员工隐私权的同时,实现这一目标,却是一个挑战。…...

探索创意的新辅助,AI与作家的完美合作

在现代社会,文学创作一直是人类精神活动中的重要一环。从古典文学到现代小说,从诗歌到戏剧,作家们以他们的独特视角和文学天赋为我们展示了丰富多彩的人生世界。而近年来,人工智能技术的快速发展已经渗透到各行各业,文…...

计算机类软件方向适合参加的比赛

前言 博主是一名计算机专业的大三学生,在校时候参加了很多比赛和训练营,现在给大家博主参加过的几个的比赛,希望能给大一大二的学生提供一点建议。 正文 最近也有比赛的,我会从时间线上来给大家推荐一些比赛,并且给…...

win11、win10使用python代码打开和关闭wifi热点的正确方法

问题一 win10、win11,可以在任务栏的WIFI图标启动移动热点,但是无法设置SSID和密码。在网上搜索好久,无解。 万能的网络解决不了,只能自己动手解决了。 问题二 我当前的WiFi驱动程序不支持承载网络,如果我输入netsh…...

spark的数据扩展

会导致数据扩展的操作; 如何避免数据扩展; 一 countDistinct操作 1. 扩展原因 Spark的count distinct操作可能会导致数据扩展的原因是,它需要在执行操作之前对所有不同的值 进行分组。这意味着Spark需要将所有数据加载到内存中,并将其按照不同的值进行…...

前后端分离-图书价格排序案例、后端返回图片地址显示在组件上(打印图片地址)

前后端分离之图书价格排序案例,之后端返回图片地址显示在组件上 注意:分别建前后端项目,前端项目只写前端代码,后端项目只写后端代码1 图书后端 1.1 图书后端之建表 1.2 图书后端之序列化类 1.3 图书后端之视图类 1.4 图书后端之…...

Text-to-SQL小白入门(七)PanGu-Coder2论文——RRTF

论文概述 学习这个RRTF之前,可以先学习一下RLHF。 顺带一提:eosphoros-ai组织「DB-GPT开发者」最新有个新项目Awesome-Text2SQL:GitHub - eosphoros-ai/Awesome-Text2SQL: Curated tutorials and resources for Large Language Models, Text2…...

C语言中常见的面试题

解释C语言中的基本数据类型,并举例说明它们的用法和限制。描述C语言中的变量和常量的定义方法,以及它们的作用和区别。解释C语言中的数组和字符串,并说明它们的定义方法和使用注意事项。描述C语言中的循环结构和控制语句,并举例说明它们的用法和限制。解释C语言中的函数和函…...

协议-SSL协议-基础概念01-SSL位置-协议套件-握手和加密过程-对比ipsec

SSL的位置-思维导图 参考来源: 华为培训ppt:HCSCE122_SSL VPN技术 ##SSL的位置 SSL协议套件 ​​​​握手阶段,完成验证,协商出密码套件,进而生成对称密钥,用于后续的加密通信。 加密通信阶段,数据由对…...

M1/M2芯片Parallels Desktop 19安装使用教程(超详细)

引言 在Window上VMware最强,在Mac上毫无疑问Parallels Desktop为最强! 今天带来的是最新版Parallels Desktop 19的安装使用教程。 1. 下载安装包 Parallels Desktop 19安装包:https://www.aliyundrive.com/s/ThB8Fs6D3AD Parallels Deskto…...

外包干了3个月,技术退步明显。。。。。

先说一下自己的情况,大专生,17年通过校招进入广州某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...

顺风车软件搭建流程:数字化出行与社会共享的创新

随着移动互联网的快速发展,顺风车软件作为一种新型出行方式逐渐流行起来。本文将介绍顺风车软件搭建的流程,包括需求分析、技术架构设计、用户体验优化以及安全性保障。通过深入思考数字化出行与社会共享的关系,为读者呈现一个专业、有逻辑性…...

2023-09-26 LeetCode每日一题(递枕头)

2023-09-26每日一题 一、题目编号 2582. 递枕头二、题目链接 点击跳转到题目位置 三、题目描述 n 个人站成一排,按从 1 到 n 编号。 最初,排在队首的第一个人拿着一个枕头。每秒钟,拿着枕头的人会将枕头传递给队伍中的下一个人。一旦枕…...

excell导入十万数据慢该如何解决

1.遇到的问题 项目中遇到导入6w条数据,之前用的poi,感觉很慢,这时查询了下阿里巴巴提供了开源的easyExcell很好用。 EasyExcel官方文档 - 基于Java的Excel处理工具 | Easy Excel 2.读写速度 64M内存20秒读取75M(46W行25列)的Excel&#x…...

Python异步编程常见问题与解决

Python异步编程常见问题与解决 在当今的互联网应用中,异步编程成为了一种非常重要的技术。在Python中,我们可以利用异步编程来提高应用的性能和响应能力。然而,异步编程也会带来一些常见的问题。本文将向你分享一些在Python中处理异步编程的…...

77. 组合

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 1: 输入:n 4, k 2 输出: [[2,4],[3,4],[2,3],[1,2],[1,3],[1,4], ] 示例 2: 输入:n 1, k 1 输出…...

vue项目开发环境工具-node

最近在开始接触做vue框架的前端项目,以前用的前端比如html,js,css等都是比较原生的,写好后直接浏览器打开就行。但vue跟java一样是需要编译的,和微信小程序类似。今天就先记录一下vue的开发运行搭建。所需工具如下 nod…...

Python | 为FastAPI后端服务添加API Key认证(分别基于路径传参和header两种方式且swagger文档友好支持)

文章目录 01 前言02 路径传参方式添加API Key2.1 完整代码2.2 请求示例2.3 swagger文档测试 03 请求头Header方式传入API Key(推荐)3.1 完整代码3.2 请求示例3.3 swagger文档测试 01 前言 FastAPI,如其名所示,是一个极为高效的框…...

nodeJs+jwt实现小程序tonken鉴权

nodeJsjwt实现小程序tonken鉴权 自我记录 config\config.js // 配置文件 module.exports {DBHOST: 127.0.0.1,DBPORT: 27017,DBNAME: test,secret: xxxxx,// 小程序的appSecretAppID: xxxxx,// 小程序的appId }token中间件 middlewares\checkTokenMiddleware.js //导入 jwt…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

2023赣州旅游投资集团

单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦&#xff0…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...