当前位置: 首页 > news >正文

【数值计算方法】非线性方程(组)和最优化问题的计算方法:非线性方程式求根的二分法、迭代法、Newton 迭代法及其Python实现

目录

一、非线性方程式求根

1、二分法(Bisection Method、对分法)

a. 理论简介

b. python实现

2、迭代法(Iterative Method)

a. 理论简介

b. python实现

3、Newton 迭代法(Newton's Method)

a. 理论简介

b. python实现


一、非线性方程式求根

        非线性方程举例:

f(x)=0

5x^4+3x+1=0

        非线性方程式求根是一个重要的数值计算问题,常用的方法包括二分法、迭代法和牛顿迭代法。

1、二分法(Bisection Method、对分法)

a. 理论简介

(连续函数介值定理)

        二分法是一种简单而直观的求根方法,适用于单调函数的根。它的基本思想是通过不断缩小根所在区间来逼近根的位置。具体步骤如下:

  • 首先,选择一个初始区间[a, b],确保函数在这个区间内连续且函数值异号(即f(a) * f(b) < 0)。
  • 然后,计算区间的中点c = (a + b) / 2,并计算函数在c处的值f(c)。
  • 接下来,根据f(c)与0的关系,确定新的区间[a, c]或[c, b],使得新的区间内仍满足函数值异号的条件。
  • 重复上述步骤,直到满足预设的精度要求,即根的近似值落在所选区间内。

b. python实现

def f(x):return 5 * x**4 + 3 * x + 1def bisection_method(a, b, tolerance=1e-6, max_iterations=100):if f(a) * f(b) >= 0:return Nonefor _ in range(max_iterations):c = (a + b) / 2if abs(f(c)) < tolerance:return cif f(c) * f(a) < 0:b = celse:a = creturn None# 调用二分法求解方程的根
root = bisection_method(a=-1, b=0)
if root is not None:print("方程的一个根为:", root)
else:print("未找到方程的根")

注意,二分法要求初始区间[a, b]满足f(a) * f(b) < 0,即方程在区间的两个端点上取值异号。

输出:

a=-0.5, b=1
方程的一个根为: -0.36193275451660156
a=-1, b=0
未找到方程的根

2、迭代法(Iterative Method)

a. 理论简介

        迭代法是一种通过不断迭代逼近根的方法,适用于任意函数的根。它的基本思想是从一个初始的近似值开始,通过不断更新逼近根的位置,直到满足预设的精度要求。具体步骤如下:

  • 首先,选择一个初始的近似值x0。
  • 然后,根据迭代公式x[i+1] = g(x[i]),计算下一个近似值x[i+1]。
  • 重复上述步骤,直到满足预设的精度要求,即近似值与根的差值足够小。

b. python实现

def g(x):return (-1) / (5 * x**3 + 3)def iterative_method(initial_guess, tolerance=1e-6, max_iterations=100):x = initial_guessfor _ in range(max_iterations):x_next = g(x)if abs(x_next - x) < tolerance:return x_nextx = x_nextreturn None# 调用迭代法求解方程的根
root = iterative_method(initial_guess=0)
if root is not None:print("方程的一个根为:", root)
else:print("未找到方程的根")

注意,迭代法的收敛性与迭代函数的选择密切相关,对于某些函数可能无法收敛或者收敛速度很慢。

输出:

方程的一个根为: -0.36193292438672897

3、Newton 迭代法(Newton's Method)

a. 理论简介

        牛顿迭代法是一种快速收敛的求根方法,适用于光滑函数的根。它利用函数的局部线性近似来逼近根的位置。具体步骤如下:

  • 首先,选择一个初始的近似值x0。
  • 然后,根据牛顿迭代公式x[i+1] = x[i] - f(x[i]) / f'(x[i]),计算下一个近似值x[i+1]。
  • 重复上述步骤,直到满足预设的精度要求,即近似值与根的差值足够小。

b. python实现

def f(x):return 5 * x**4 + 3 * x + 1def f_prime(x):return 20 * x**3 + 3def newton_method(initial_guess, tolerance=1e-6, max_iterations=100):x = initial_guessfor _ in range(max_iterations):delta_x = f(x) / f_prime(x)x -= delta_xif abs(delta_x) < tolerance:return xreturn None# 调用牛顿迭代法求解方程的根
root = newton_method(initial_guess=0)
if root is not None:print("方程的一个根为:", root)print(int(f(root)))
else:print("未找到方程的根")

注意,牛顿法要求2阶导不编号,1阶导不为0

输出:

方程的一个根为: -0.3619330489831212

相关文章:

【数值计算方法】非线性方程(组)和最优化问题的计算方法:非线性方程式求根的二分法、迭代法、Newton 迭代法及其Python实现

目录 一、非线性方程式求根 1、二分法&#xff08;Bisection Method、对分法&#xff09; a. 理论简介 b. python实现 2、迭代法&#xff08;Iterative Method&#xff09; a. 理论简介 b. python实现 3、Newton 迭代法&#xff08;Newtons Method&#xff09; a. 理论…...

linux主机名

title: linux主机名 createTime: 2020-10-29 18:05:52 updateTime: 2020-10-29 18:05:52 categories: linux tags: Linux系统的主机名 查询主机名 hostnamehostnamectl 修改主机名 hostnamectl set-hostname <newhostname>...

前端uniapp图片select联动文本切换

图片 代码 <template><!-- 这个是uniapp的下拉框 --><uni-data-select v-model"pay_type" :localdata"range" change"handleSelectChange"></uni-data-select><!-- 图片 --><image :src"dynamicImage&qu…...

java - 包装类

目录 前言 一 什么是包装类? 1.获取包装类的两种方式(了解)(已经淘汰) 2.两种方式获取对象的区别(掌握) 3.自动装箱&&自动装箱 4.Integer常用方法 总结 前言 大家好,今天给大家讲解一下包装类 一 什么是包装类? 在Java中&#xff0c;每个基本数据类型都有对应…...

防火墙基础

目录 1、 防火墙支持那些NAT技术&#xff0c;主要应用场景是什么&#xff1f; 2、当内网PC通过公网域名解析访问内网服务器时&#xff0c;会存在什么问题&#xff0c;如何解决&#xff1f; 3、防火墙使用VRRP实现双机热备时会遇到什么问题&#xff0c;如何解决&#xff1f; 4…...

服务断路器_Resilience4j的断路器

断路器&#xff08;CircuitBreaker&#xff09;相对于前面几个熔断机制更复杂&#xff0c;CircuitBreaker通常存在三种状态&#xff08;CLOSE、OPEN、HALF_OPEN&#xff09;&#xff0c;并通过一个时间或数量窗口来记录当前的请求成功率或慢速率&#xff0c;从而根据这些指标来…...

微信小程序学习笔记3.0

第3章 资讯类:仿今日头条微信小程序 3.1 需求描述及交互分析 需求描述 仿今日头条微信小程序,要具有以下功能。 (1)首页新闻频道框架设计,包括底部标签导航设计、新闻检索框设计及新闻频道滑动效果设计。 (2)首页新闻内容设计,包括新闻标题、新闻图片及新闻评论设计…...

nginx 反向代理 负载均衡 动静分离

一样东西的诞生通常都是为了解决某些问题&#xff0c;对于 Nginx 而言&#xff0c;也是如此。 比如&#xff0c;你出于无聊写了一个小网站&#xff0c;部署到 tomcat 之后可以正常访问 但是后来&#xff0c;你的这个小网站因为内容很诱人逐步的火了&#xff0c;用户越来越多&a…...

Codeanalysis(tca)后端二次开发环境搭建

先试用官方脚本文件件quick_install.sh将整个项目启动起来&#xff0c;然后到每个微服务下查看每个服务的pid进程&#xff0c;需要调试哪个先把对应的微服务关闭手动启动&#xff0c;具体启动流程如下&#xff1a; cd 到项目根目录下 source script\config.sh # 激活系统环境…...

JS前端树形Tree数据结构使用

前端开发中会经常用到树形结构数据&#xff0c;如多级菜单、商品的多级分类等。数据库的设计和存储都是扁平结构&#xff0c;就会用到各种Tree树结构的转换操作&#xff0c;本文就尝试全面总结一下。 如下示例数据&#xff0c;关键字段id为唯一标识&#xff0c;pid为父级id&am…...

Automation Anywhere推出新的生成式AI自动化平台,加速提高企业生产力

在9 月 19 日的Imagine 2023 大会上&#xff0c;智能自动化领域的领导者 Automation Anywhere 宣布对其自动化平台进行扩展。推出了新的 Responsible AI Layer&#xff0c;并宣布了四项关键产品更新&#xff0c;包括全新的 Autopilot&#xff0c;它可以利用生成式 AI &#xff…...

电缆隧道在线监测系统:提升电力设施安全与效率的关键

随着城市化进程的加快&#xff0c;电力电缆隧道在保障城市电力供应方面的地位日益重要。然而&#xff0c;电缆隧道环境复杂&#xff0c;容易受到多种因素影响&#xff0c;如温度、湿度、烟雾、水位等&#xff0c;严重威胁电力设施的安全与稳定运行。在此背景下&#xff0c;电缆…...

Java BigDecimal 详解

目录 一、BigDecimal 1、简介 2、构造器描述 3、方法描述 4、使用 一、BigDecimal float和double类型的主要设计目标是为了科学计算和工程计算。他们执行二进制浮点运算&#xff0c;这是为了在广域数值范围上提供较为精确的快速近似计算而精心设计的。然而&#xff0c;它…...

简述信息论与采样定理

信息论 香农信息论发表于1948/1949年&#xff0c;它由三部分组成&#xff1a;信号采样、信源编码、信道编码&#xff1b; 信号采样&#xff1a;采样理论研究在何种条件下对连续信号进行采样&#xff0c;从而得到的离散型号可以可逆地恢复出采样前的连续信号。采样得到的离散实…...

网络安全之网站常见的攻击方式

这是作者自学的哈&#xff0c;不算课程内容。 网页中出现大量黑链 网站看着很正常&#xff0c;但是会隐藏一些链接。网页的链接几乎都是标签&#xff0c;这种黑链就是通过链接标签<a></a>或者script在里面链入恶意脚本&#xff0c;等待浏览者的访问&#xff0c;通…...

iOS Swift 拍照识别数字(Recognizing Text in Images)

可以用腾讯云 OCR的iOS demo - 腾讯云 苹果官方的解决方案&#xff08;识别度太低&#xff09; Recognizing Text in Images - apple developer Extracting phone numbers from text in images(Sample Code) - apple developer import UIKit import Visionclass ViewContro…...

数学建模:智能优化算法及其python实现

数学建模:智能优化算法及其python实现 智能优化算法简介差分进化算法(Differential Evolution,DE)遗传算法(Genetic Algorithm,GA)粒子群优化算法(Particle Swarm Optimization,PSO)模拟退火算法(Simulated Annealing,SA)蚁群算法(Ant Colony Optimization,ACO)…...

monkeyrunner环境搭建和初步用法

一、打开模拟器 运行monkeyrunner之前必须先运行相应的模拟器&#xff0c;不然monkeyrunner无法连接设备。 用Elipse打开Android模拟器或在CMD中用Android命令打开模拟器。这里重点讲一下在CMD中用Android命令打开模拟器 命令&#xff1a;emulator -avd test &#xff08;注…...

2024华为校招面试真题汇总及其解答(一)

1. 我问你点java基础的问题吧,你平时都用什么集合啊,都什么情况下使用 在 Java 中,常用的集合有以下几种: List:有序集合,可以重复,常用实现类有 ArrayList、LinkedList、Vector。Set:无序集合,不能重复,常用实现类有 HashSet、TreeSet。Map:键值对集合,键不能重复…...

css调整字体间距 以及让倾斜字体

调整字体间距 .element {letter-spacing: 2px; /* 调整为适当的值 */ }倾斜字体1 .element {font-style: italic; }请注意&#xff0c;不是所有的字体都有斜体样式可用。如果字体本身没有斜体版本&#xff0c;则可能无法实现完全的斜体效果。 倾斜字体2 <span class"…...

工具篇 | Gradle入门与使用指南 - 附Github仓库地址

介绍 1.1 什么是Gradle&#xff1f; Gradle是一个开源构建自动化工具&#xff0c;专为大型项目设计。它基于DSL&#xff08;领域特定语言&#xff09;编写&#xff0c;该语言是用Groovy编写的&#xff0c;使得构建脚本更加简洁和强大。Gradle不仅可以构建Java应用程序&#x…...

使用 Python 函数callable和isinstance的意义

一、说明 在这篇博客中&#xff0c;我们将探讨两个python函数&#xff1a;1 callable 中的函数及其有趣的应用程序。该callable函数用于检查对象是否可调用&#xff0c;这意味着它可以作为函数调用。2 isinstance这个内置函数允许我们比较两种不同的数据类型并确定它们是否相…...

Netty场景及其原理

Netty场景及其原理 Netty简化Java NIO的类库的使用&#xff0c;包括Selector、 ServerSocketChannel、 SocketChannel、ByteBuffer&#xff0c;解决了断线重连、 网络闪断、心跳处理、半包读写、 网络拥塞和异常流的处理等。Netty拥有高性能、 吞吐量更高&#xff0c;延迟更低…...

Java接口和接口继承

Java接口和接口继承 接口 在抽象类中&#xff0c;抽象方法本质上是定义接口规范&#xff0c;即规定高层类的接口&#xff0c;从而保证所有子类都有相同的接口实现&#xff0c;这样&#xff0c;多态就能发挥出威力。 如果一个抽象类没有字段&#xff0c;所有方法全部都是抽象方…...

2023 年解锁网络安全即服务

在当今快速发展的数字世界中&#xff0c;强大的网络安全机制的重要性怎么强调都不为过。对于越来越多地发现自己成为网络威胁焦点的小型企业来说尤其如此。 那么&#xff0c;“网络安全即服务”到底是什么&#xff1f;为什么它对小型企业至关重要&#xff1f; 网络安全即服务…...

python基于轻量级卷积神经网络模型GhostNet开发构建养殖场景下生猪行为识别系统

养殖业的数字化和智能化是一个综合应用了互联网、物联网、人工智能、大数据、云计算、区块链等数字技术的过程&#xff0c;旨在提高养殖效率、提升产品质量以及促进产业升级。在这个过程中&#xff0c;养殖生猪的数字化智能化可以识别并管理猪的行为。通过数字化智能化系统&…...

Selenium自动化测试 —— 通过cookie绕过验证码的操作!

验证码的处理 对于web应用&#xff0c;很多地方比如登录、发帖都需要输入验证码&#xff0c;类型也多种多样&#xff1b;登录/核心操作过程中&#xff0c;系统会产生随机的验证码图片&#xff0c;进行验证才能进行后续操作 解决验证码的方法如下&#xff1a; 1、开发做个万能…...

链表(单链表、双链表)

前言&#xff1a;链表是算法中比较难理解的部分&#xff0c;本博客记录单链表、双链表学习&#xff0c;理解节点和指针的使用&#xff0c;主要内容包括&#xff1a;使用python创建链表、实现链表常见的操作。 目录 单链表 双链表 单链表 引入链表的背景&#xff1a; 先来看…...

面试题08.05.递归算法

递归乘法。 写一个递归函数&#xff0c;不使用 * 运算符&#xff0c; 实现两个正整数的相乘。可以使用加号、减号、位移&#xff0c;但要吝啬一些。 示例1: 输入&#xff1a;A 1, B 10输出&#xff1a;10示例2: 输入&#xff1a;A 3, B 4输出&#xff1a;12提示: 保证乘法…...

分布式IT监控系统

公司的IT系统越来越复杂&#xff0c;对运维和维护服务的需求也越来越高。在这种环境下&#xff0c;分布式IT监控系统应运而生。它逐渐成为公司提高运营效率、保证业务高效运营的关键工具&#xff0c;功能强大&#xff0c;性能优良。 分布式IT监控系统是什么&#xff1f; 分布…...