当前位置: 首页 > news >正文

【数值计算方法】非线性方程(组)和最优化问题的计算方法:非线性方程式求根的二分法、迭代法、Newton 迭代法及其Python实现

目录

一、非线性方程式求根

1、二分法(Bisection Method、对分法)

a. 理论简介

b. python实现

2、迭代法(Iterative Method)

a. 理论简介

b. python实现

3、Newton 迭代法(Newton's Method)

a. 理论简介

b. python实现


一、非线性方程式求根

        非线性方程举例:

f(x)=0

5x^4+3x+1=0

        非线性方程式求根是一个重要的数值计算问题,常用的方法包括二分法、迭代法和牛顿迭代法。

1、二分法(Bisection Method、对分法)

a. 理论简介

(连续函数介值定理)

        二分法是一种简单而直观的求根方法,适用于单调函数的根。它的基本思想是通过不断缩小根所在区间来逼近根的位置。具体步骤如下:

  • 首先,选择一个初始区间[a, b],确保函数在这个区间内连续且函数值异号(即f(a) * f(b) < 0)。
  • 然后,计算区间的中点c = (a + b) / 2,并计算函数在c处的值f(c)。
  • 接下来,根据f(c)与0的关系,确定新的区间[a, c]或[c, b],使得新的区间内仍满足函数值异号的条件。
  • 重复上述步骤,直到满足预设的精度要求,即根的近似值落在所选区间内。

b. python实现

def f(x):return 5 * x**4 + 3 * x + 1def bisection_method(a, b, tolerance=1e-6, max_iterations=100):if f(a) * f(b) >= 0:return Nonefor _ in range(max_iterations):c = (a + b) / 2if abs(f(c)) < tolerance:return cif f(c) * f(a) < 0:b = celse:a = creturn None# 调用二分法求解方程的根
root = bisection_method(a=-1, b=0)
if root is not None:print("方程的一个根为:", root)
else:print("未找到方程的根")

注意,二分法要求初始区间[a, b]满足f(a) * f(b) < 0,即方程在区间的两个端点上取值异号。

输出:

a=-0.5, b=1
方程的一个根为: -0.36193275451660156
a=-1, b=0
未找到方程的根

2、迭代法(Iterative Method)

a. 理论简介

        迭代法是一种通过不断迭代逼近根的方法,适用于任意函数的根。它的基本思想是从一个初始的近似值开始,通过不断更新逼近根的位置,直到满足预设的精度要求。具体步骤如下:

  • 首先,选择一个初始的近似值x0。
  • 然后,根据迭代公式x[i+1] = g(x[i]),计算下一个近似值x[i+1]。
  • 重复上述步骤,直到满足预设的精度要求,即近似值与根的差值足够小。

b. python实现

def g(x):return (-1) / (5 * x**3 + 3)def iterative_method(initial_guess, tolerance=1e-6, max_iterations=100):x = initial_guessfor _ in range(max_iterations):x_next = g(x)if abs(x_next - x) < tolerance:return x_nextx = x_nextreturn None# 调用迭代法求解方程的根
root = iterative_method(initial_guess=0)
if root is not None:print("方程的一个根为:", root)
else:print("未找到方程的根")

注意,迭代法的收敛性与迭代函数的选择密切相关,对于某些函数可能无法收敛或者收敛速度很慢。

输出:

方程的一个根为: -0.36193292438672897

3、Newton 迭代法(Newton's Method)

a. 理论简介

        牛顿迭代法是一种快速收敛的求根方法,适用于光滑函数的根。它利用函数的局部线性近似来逼近根的位置。具体步骤如下:

  • 首先,选择一个初始的近似值x0。
  • 然后,根据牛顿迭代公式x[i+1] = x[i] - f(x[i]) / f'(x[i]),计算下一个近似值x[i+1]。
  • 重复上述步骤,直到满足预设的精度要求,即近似值与根的差值足够小。

b. python实现

def f(x):return 5 * x**4 + 3 * x + 1def f_prime(x):return 20 * x**3 + 3def newton_method(initial_guess, tolerance=1e-6, max_iterations=100):x = initial_guessfor _ in range(max_iterations):delta_x = f(x) / f_prime(x)x -= delta_xif abs(delta_x) < tolerance:return xreturn None# 调用牛顿迭代法求解方程的根
root = newton_method(initial_guess=0)
if root is not None:print("方程的一个根为:", root)print(int(f(root)))
else:print("未找到方程的根")

注意,牛顿法要求2阶导不编号,1阶导不为0

输出:

方程的一个根为: -0.3619330489831212

相关文章:

【数值计算方法】非线性方程(组)和最优化问题的计算方法:非线性方程式求根的二分法、迭代法、Newton 迭代法及其Python实现

目录 一、非线性方程式求根 1、二分法&#xff08;Bisection Method、对分法&#xff09; a. 理论简介 b. python实现 2、迭代法&#xff08;Iterative Method&#xff09; a. 理论简介 b. python实现 3、Newton 迭代法&#xff08;Newtons Method&#xff09; a. 理论…...

linux主机名

title: linux主机名 createTime: 2020-10-29 18:05:52 updateTime: 2020-10-29 18:05:52 categories: linux tags: Linux系统的主机名 查询主机名 hostnamehostnamectl 修改主机名 hostnamectl set-hostname <newhostname>...

前端uniapp图片select联动文本切换

图片 代码 <template><!-- 这个是uniapp的下拉框 --><uni-data-select v-model"pay_type" :localdata"range" change"handleSelectChange"></uni-data-select><!-- 图片 --><image :src"dynamicImage&qu…...

java - 包装类

目录 前言 一 什么是包装类? 1.获取包装类的两种方式(了解)(已经淘汰) 2.两种方式获取对象的区别(掌握) 3.自动装箱&&自动装箱 4.Integer常用方法 总结 前言 大家好,今天给大家讲解一下包装类 一 什么是包装类? 在Java中&#xff0c;每个基本数据类型都有对应…...

防火墙基础

目录 1、 防火墙支持那些NAT技术&#xff0c;主要应用场景是什么&#xff1f; 2、当内网PC通过公网域名解析访问内网服务器时&#xff0c;会存在什么问题&#xff0c;如何解决&#xff1f; 3、防火墙使用VRRP实现双机热备时会遇到什么问题&#xff0c;如何解决&#xff1f; 4…...

服务断路器_Resilience4j的断路器

断路器&#xff08;CircuitBreaker&#xff09;相对于前面几个熔断机制更复杂&#xff0c;CircuitBreaker通常存在三种状态&#xff08;CLOSE、OPEN、HALF_OPEN&#xff09;&#xff0c;并通过一个时间或数量窗口来记录当前的请求成功率或慢速率&#xff0c;从而根据这些指标来…...

微信小程序学习笔记3.0

第3章 资讯类:仿今日头条微信小程序 3.1 需求描述及交互分析 需求描述 仿今日头条微信小程序,要具有以下功能。 (1)首页新闻频道框架设计,包括底部标签导航设计、新闻检索框设计及新闻频道滑动效果设计。 (2)首页新闻内容设计,包括新闻标题、新闻图片及新闻评论设计…...

nginx 反向代理 负载均衡 动静分离

一样东西的诞生通常都是为了解决某些问题&#xff0c;对于 Nginx 而言&#xff0c;也是如此。 比如&#xff0c;你出于无聊写了一个小网站&#xff0c;部署到 tomcat 之后可以正常访问 但是后来&#xff0c;你的这个小网站因为内容很诱人逐步的火了&#xff0c;用户越来越多&a…...

Codeanalysis(tca)后端二次开发环境搭建

先试用官方脚本文件件quick_install.sh将整个项目启动起来&#xff0c;然后到每个微服务下查看每个服务的pid进程&#xff0c;需要调试哪个先把对应的微服务关闭手动启动&#xff0c;具体启动流程如下&#xff1a; cd 到项目根目录下 source script\config.sh # 激活系统环境…...

JS前端树形Tree数据结构使用

前端开发中会经常用到树形结构数据&#xff0c;如多级菜单、商品的多级分类等。数据库的设计和存储都是扁平结构&#xff0c;就会用到各种Tree树结构的转换操作&#xff0c;本文就尝试全面总结一下。 如下示例数据&#xff0c;关键字段id为唯一标识&#xff0c;pid为父级id&am…...

Automation Anywhere推出新的生成式AI自动化平台,加速提高企业生产力

在9 月 19 日的Imagine 2023 大会上&#xff0c;智能自动化领域的领导者 Automation Anywhere 宣布对其自动化平台进行扩展。推出了新的 Responsible AI Layer&#xff0c;并宣布了四项关键产品更新&#xff0c;包括全新的 Autopilot&#xff0c;它可以利用生成式 AI &#xff…...

电缆隧道在线监测系统:提升电力设施安全与效率的关键

随着城市化进程的加快&#xff0c;电力电缆隧道在保障城市电力供应方面的地位日益重要。然而&#xff0c;电缆隧道环境复杂&#xff0c;容易受到多种因素影响&#xff0c;如温度、湿度、烟雾、水位等&#xff0c;严重威胁电力设施的安全与稳定运行。在此背景下&#xff0c;电缆…...

Java BigDecimal 详解

目录 一、BigDecimal 1、简介 2、构造器描述 3、方法描述 4、使用 一、BigDecimal float和double类型的主要设计目标是为了科学计算和工程计算。他们执行二进制浮点运算&#xff0c;这是为了在广域数值范围上提供较为精确的快速近似计算而精心设计的。然而&#xff0c;它…...

简述信息论与采样定理

信息论 香农信息论发表于1948/1949年&#xff0c;它由三部分组成&#xff1a;信号采样、信源编码、信道编码&#xff1b; 信号采样&#xff1a;采样理论研究在何种条件下对连续信号进行采样&#xff0c;从而得到的离散型号可以可逆地恢复出采样前的连续信号。采样得到的离散实…...

网络安全之网站常见的攻击方式

这是作者自学的哈&#xff0c;不算课程内容。 网页中出现大量黑链 网站看着很正常&#xff0c;但是会隐藏一些链接。网页的链接几乎都是标签&#xff0c;这种黑链就是通过链接标签<a></a>或者script在里面链入恶意脚本&#xff0c;等待浏览者的访问&#xff0c;通…...

iOS Swift 拍照识别数字(Recognizing Text in Images)

可以用腾讯云 OCR的iOS demo - 腾讯云 苹果官方的解决方案&#xff08;识别度太低&#xff09; Recognizing Text in Images - apple developer Extracting phone numbers from text in images(Sample Code) - apple developer import UIKit import Visionclass ViewContro…...

数学建模:智能优化算法及其python实现

数学建模:智能优化算法及其python实现 智能优化算法简介差分进化算法(Differential Evolution,DE)遗传算法(Genetic Algorithm,GA)粒子群优化算法(Particle Swarm Optimization,PSO)模拟退火算法(Simulated Annealing,SA)蚁群算法(Ant Colony Optimization,ACO)…...

monkeyrunner环境搭建和初步用法

一、打开模拟器 运行monkeyrunner之前必须先运行相应的模拟器&#xff0c;不然monkeyrunner无法连接设备。 用Elipse打开Android模拟器或在CMD中用Android命令打开模拟器。这里重点讲一下在CMD中用Android命令打开模拟器 命令&#xff1a;emulator -avd test &#xff08;注…...

2024华为校招面试真题汇总及其解答(一)

1. 我问你点java基础的问题吧,你平时都用什么集合啊,都什么情况下使用 在 Java 中,常用的集合有以下几种: List:有序集合,可以重复,常用实现类有 ArrayList、LinkedList、Vector。Set:无序集合,不能重复,常用实现类有 HashSet、TreeSet。Map:键值对集合,键不能重复…...

css调整字体间距 以及让倾斜字体

调整字体间距 .element {letter-spacing: 2px; /* 调整为适当的值 */ }倾斜字体1 .element {font-style: italic; }请注意&#xff0c;不是所有的字体都有斜体样式可用。如果字体本身没有斜体版本&#xff0c;则可能无法实现完全的斜体效果。 倾斜字体2 <span class"…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...