基于R的linkET包qcorrplot可视化Mantel test相关性网络热图分析correlation heatmap
写在前面
需求是对瘤胃宏基因组结果鉴定到的差异菌株与表观指标、瘤胃代谢组、血清代谢组、牛奶代谢组中有差异的部分进行关联分析,效果图如下:

数据准备
逗号分隔的csv格式文件,两个表格,一个是每个样本对应的表观指标数据,另一个是每个样本对应的菌群丰度,我这里用的是genus水平
- 需要关联的表观数据
rumen.csv

- 不同样本的菌群丰度
genus.csv

R包linkET可视化
- 装包
install.pakages("linkET")
library(linkET)
如果报错R版本有问题装不上(我的4.3.1版本R出现了这个报错)请尝试:
install.packages("devtools")
devtools::install_github("Hy4m/linkET", force = TRUE)
packageVersion("linkET")
- 读取数据
library(ggplot2)
rumen <- read.csv("rumen.csv",sep=",",row.name=1,stringsAsFactors = FALSE,check.names = FALSE)
genus <- read.csv("genus.csv",sep=",",row.name=1,stringsAsFactors = FALSE,check.names = FALSE)
#如果报错row.names重复错误请检查数据格式是否为csv
rumen.csv组内相关系数
matrix_data(list(rumen = rumen)) %>% as_md_tbl()
correlate(rumen) %>% as_matrix_data()
correlate(rumen) %>% as_md_tbl()correlate(rumen) %>% as_md_tbl() %>% qcorrplot() +geom_square()#如果对“%>%”功能报错,装具有此功能的包即可,比如dplyrlibrary(vegan)
correlate(rumen, genus, method = "spearman") %>% qcorrplot() +geom_square() +geom_mark(sep = '\n',size = 3, sig_level = c(0.05, 0.01, 0.001),sig_thres = 0.05, color = 'white') + #添加显著性和相关性值scale_fill_gradientn(colours = RColorBrewer::brewer.pal(11, "RdBu"))

- 两个表格进行关联生成相关性矩阵图,带显著性标记
library(vegan)
correlate(rumen, genus, method = "spearman") %>% qcorrplot() +geom_square() +geom_mark(sep = '\n',size = 3, sig_level = c(0.05, 0.01, 0.001),sig_thres = 0.05, color = 'white') + #添加显著性和相关性值scale_fill_gradientn(colours = RColorBrewer::brewer.pal(11, "RdBu"))
- 加工可视化
library(dplyr)
mantel <- mantel_test(rumen, genus,spec_select = list(Milk_yeild=1,Milk_fat=2,Urea_Nitrogen=3,Butyric_acid=4,Valeric_acid=5,BUN=6,T_AOC=7,SOD=8,MDA=9,IgA=10,IgG=11))%>% mutate(rd = cut(r, breaks = c(-Inf, 0.5, Inf),labels = c("< 0.5", ">= 0.5")),pd = cut(p, breaks = c(-Inf, 0.01, 0.05, Inf),labels = c("< 0.01", "0.01 - 0.05", ">= 0.05")))qcorrplot(correlate(genus), type = "lower", diag = FALSE) +geom_square() +geom_mark(sep = '\n',size = 1.8, sig_level = c(0.05, 0.01, 0.001),sig_thres = 0.05,color="white") +geom_couple(aes(colour = pd, size = rd), data = mantel, curvature = nice_curvature()) +scale_fill_gradientn(colours = RColorBrewer::brewer.pal(11, "RdBu")) +scale_size_manual(values = c(0.5, 1, 2)) +scale_colour_manual(values = color_pal(3)) +guides(size = guide_legend(title = "Mantel's r",override.aes = list(color = "black"), order = 2),colour = guide_legend(title = "Mantel's p", override.aes = list(size = 3), order = 1),fill = guide_colorbar(title = "Pearson's r", order = 3))

- 不显著的灰色连接线部分也可以去掉让画面更干净。其余细节去AI加工即可。
相关文章:
基于R的linkET包qcorrplot可视化Mantel test相关性网络热图分析correlation heatmap
写在前面 需求是对瘤胃宏基因组结果鉴定到的差异菌株与表观指标、瘤胃代谢组、血清代谢组、牛奶代谢组中有差异的部分进行关联分析,效果图如下: 数据准备 逗号分隔的csv格式文件,两个表格,一个是每个样本对应的表观指标数据&…...
IOTDB的TsFile底层设计
目录 概述 数据模型 数据结构 元数据注册 读取和写入 设计思想 主要过程...
MATLAB算法实战应用案例精讲-【人工智能】边缘计算(补充篇)
目录 前言 算法原理 传统边缘检测算子 构建通用的边缘检测算子 图...
Linux学习-HIS系统部署(1)
Git安装 #安装中文支持(选做) [rootProgramer ~]# echo $LANG #查看当前系统语言及编码 en_US.UTF-8 [rootProgramer ~]# yum -y install langpacks-zh_CN.noarch #安装中文支持 [rootProgramer ~]# vim /etc/locale.co…...
Cairo介绍及源码构建安装(3)
接前一篇文章:Cairo介绍及源码构建安装(2) 四、Cairo构建与安装 2. 配置 BLFS中给出的命令为: ./configure --prefix/usr \--disable-static \--enable-tee 这里将“--prefix”选项由“/usr”调整为“/usr/local”&#x…...
Mac电脑信息大纲记录软件 OmniOutliner 5 Pro for Mac中文
OmniOutliner 5 Pro是一款专业级的Mac大纲制作工具,它可以帮助用户更好地组织和管理信息,以及制作精美的大纲。以下是OmniOutliner 5 Pro的主要功能和特点: 强大的大纲组织和管理功能。OmniOutliner 5 Pro为用户提供了多层次的大纲结构&…...
linux设置应用开机自启(通用:mysql、jar、nginx、solr...)
1. 业务场景 用于单机生产环境,防止服务器断电或者强制重启导致的服务下线。 2. 实现方案 对于无状态服务,可容器部署设置 restart: always,systemctl eable docker对于有状态服务,可编写自启脚本,如下 ① 编写执行…...
Offset Explorer(Kafka消息可视化工具)报invalid hex digit ‘{‘错误解决方法
解决办法: 根据代码的实际情况,设置成对应的值。设置完成后点update、refresh更新。...
深度学习:模型训练过程中Trying to backward through the graph a second time解决方案
1 问题描述 在训练lstm网络过程中出现如下错误: Traceback (most recent call last):File "D:\code\lstm_emotion_analyse\text_analyse.py", line 82, in <module>loss.backward()File "C:\Users\lishu\anaconda3\envs\pt2\lib\site-packag…...
【数值计算方法】非线性方程(组)和最优化问题的计算方法:非线性方程式求根的二分法、迭代法、Newton 迭代法及其Python实现
目录 一、非线性方程式求根 1、二分法(Bisection Method、对分法) a. 理论简介 b. python实现 2、迭代法(Iterative Method) a. 理论简介 b. python实现 3、Newton 迭代法(Newtons Method) a. 理论…...
linux主机名
title: linux主机名 createTime: 2020-10-29 18:05:52 updateTime: 2020-10-29 18:05:52 categories: linux tags: Linux系统的主机名 查询主机名 hostnamehostnamectl 修改主机名 hostnamectl set-hostname <newhostname>...
前端uniapp图片select联动文本切换
图片 代码 <template><!-- 这个是uniapp的下拉框 --><uni-data-select v-model"pay_type" :localdata"range" change"handleSelectChange"></uni-data-select><!-- 图片 --><image :src"dynamicImage&qu…...
java - 包装类
目录 前言 一 什么是包装类? 1.获取包装类的两种方式(了解)(已经淘汰) 2.两种方式获取对象的区别(掌握) 3.自动装箱&&自动装箱 4.Integer常用方法 总结 前言 大家好,今天给大家讲解一下包装类 一 什么是包装类? 在Java中,每个基本数据类型都有对应…...
防火墙基础
目录 1、 防火墙支持那些NAT技术,主要应用场景是什么? 2、当内网PC通过公网域名解析访问内网服务器时,会存在什么问题,如何解决? 3、防火墙使用VRRP实现双机热备时会遇到什么问题,如何解决? 4…...
服务断路器_Resilience4j的断路器
断路器(CircuitBreaker)相对于前面几个熔断机制更复杂,CircuitBreaker通常存在三种状态(CLOSE、OPEN、HALF_OPEN),并通过一个时间或数量窗口来记录当前的请求成功率或慢速率,从而根据这些指标来…...
微信小程序学习笔记3.0
第3章 资讯类:仿今日头条微信小程序 3.1 需求描述及交互分析 需求描述 仿今日头条微信小程序,要具有以下功能。 (1)首页新闻频道框架设计,包括底部标签导航设计、新闻检索框设计及新闻频道滑动效果设计。 (2)首页新闻内容设计,包括新闻标题、新闻图片及新闻评论设计…...
nginx 反向代理 负载均衡 动静分离
一样东西的诞生通常都是为了解决某些问题,对于 Nginx 而言,也是如此。 比如,你出于无聊写了一个小网站,部署到 tomcat 之后可以正常访问 但是后来,你的这个小网站因为内容很诱人逐步的火了,用户越来越多&a…...
Codeanalysis(tca)后端二次开发环境搭建
先试用官方脚本文件件quick_install.sh将整个项目启动起来,然后到每个微服务下查看每个服务的pid进程,需要调试哪个先把对应的微服务关闭手动启动,具体启动流程如下: cd 到项目根目录下 source script\config.sh # 激活系统环境…...
JS前端树形Tree数据结构使用
前端开发中会经常用到树形结构数据,如多级菜单、商品的多级分类等。数据库的设计和存储都是扁平结构,就会用到各种Tree树结构的转换操作,本文就尝试全面总结一下。 如下示例数据,关键字段id为唯一标识,pid为父级id&am…...
Automation Anywhere推出新的生成式AI自动化平台,加速提高企业生产力
在9 月 19 日的Imagine 2023 大会上,智能自动化领域的领导者 Automation Anywhere 宣布对其自动化平台进行扩展。推出了新的 Responsible AI Layer,并宣布了四项关键产品更新,包括全新的 Autopilot,它可以利用生成式 AI ÿ…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
