当前位置: 首页 > news >正文

基于R的linkET包qcorrplot可视化Mantel test相关性网络热图分析correlation heatmap

写在前面

需求是对瘤胃宏基因组结果鉴定到的差异菌株与表观指标、瘤胃代谢组、血清代谢组、牛奶代谢组中有差异的部分进行关联分析,效果图如下:

image-20230926151159439

数据准备

逗号分隔的csv格式文件,两个表格,一个是每个样本对应的表观指标数据,另一个是每个样本对应的菌群丰度,我这里用的是genus水平

  • 需要关联的表观数据rumen.csv

image-20230926151926227

  • 不同样本的菌群丰度genus.csv

image-20230926152040334

R包linkET可视化

  • 装包
install.pakages("linkET")
library(linkET)

如果报错R版本有问题装不上(我的4.3.1版本R出现了这个报错)请尝试:

install.packages("devtools")
devtools::install_github("Hy4m/linkET", force = TRUE)
packageVersion("linkET")
  • 读取数据
library(ggplot2)
rumen <- read.csv("rumen.csv",sep=",",row.name=1,stringsAsFactors = FALSE,check.names = FALSE)
genus <- read.csv("genus.csv",sep=",",row.name=1,stringsAsFactors = FALSE,check.names = FALSE)
#如果报错row.names重复错误请检查数据格式是否为csv
  • rumen.csv组内相关系数
matrix_data(list(rumen = rumen)) %>% as_md_tbl()
correlate(rumen) %>% as_matrix_data()
correlate(rumen) %>% as_md_tbl()correlate(rumen) %>% as_md_tbl() %>% qcorrplot() +geom_square()#如果对“%>%”功能报错,装具有此功能的包即可,比如dplyrlibrary(vegan)
correlate(rumen, genus, method = "spearman") %>% qcorrplot() +geom_square() +geom_mark(sep = '\n',size = 3, sig_level = c(0.05, 0.01, 0.001),sig_thres = 0.05, color = 'white') + #添加显著性和相关性值scale_fill_gradientn(colours = RColorBrewer::brewer.pal(11, "RdBu"))

在这里插入图片描述

  • 两个表格进行关联生成相关性矩阵图,带显著性标记
library(vegan)
correlate(rumen, genus, method = "spearman") %>% qcorrplot() +geom_square() +geom_mark(sep = '\n',size = 3, sig_level = c(0.05, 0.01, 0.001),sig_thres = 0.05, color = 'white') + #添加显著性和相关性值scale_fill_gradientn(colours = RColorBrewer::brewer.pal(11, "RdBu"))
image-20230926155801309
  • 加工可视化
library(dplyr)
mantel <- mantel_test(rumen, genus,spec_select = list(Milk_yeild=1,Milk_fat=2,Urea_Nitrogen=3,Butyric_acid=4,Valeric_acid=5,BUN=6,T_AOC=7,SOD=8,MDA=9,IgA=10,IgG=11))%>% mutate(rd = cut(r, breaks = c(-Inf,  0.5, Inf),labels = c("< 0.5", ">= 0.5")),pd = cut(p, breaks = c(-Inf, 0.01, 0.05, Inf),labels = c("< 0.01", "0.01 - 0.05", ">= 0.05")))qcorrplot(correlate(genus), type = "lower", diag = FALSE) +geom_square() +geom_mark(sep = '\n',size = 1.8, sig_level = c(0.05, 0.01, 0.001),sig_thres = 0.05,color="white") +geom_couple(aes(colour = pd, size = rd), data = mantel, curvature = nice_curvature()) +scale_fill_gradientn(colours = RColorBrewer::brewer.pal(11, "RdBu")) +scale_size_manual(values = c(0.5, 1, 2)) +scale_colour_manual(values = color_pal(3)) +guides(size = guide_legend(title = "Mantel's r",override.aes = list(color = "black"), order = 2),colour = guide_legend(title = "Mantel's p", override.aes = list(size = 3), order = 1),fill = guide_colorbar(title = "Pearson's r", order = 3))

在这里插入图片描述

  • 不显著的灰色连接线部分也可以去掉让画面更干净。其余细节去AI加工即可。

相关文章:

基于R的linkET包qcorrplot可视化Mantel test相关性网络热图分析correlation heatmap

写在前面 需求是对瘤胃宏基因组结果鉴定到的差异菌株与表观指标、瘤胃代谢组、血清代谢组、牛奶代谢组中有差异的部分进行关联分析&#xff0c;效果图如下&#xff1a; 数据准备 逗号分隔的csv格式文件&#xff0c;两个表格&#xff0c;一个是每个样本对应的表观指标数据&…...

IOTDB的TsFile底层设计

目录 概述 数据模型 数据结构 元数据注册 读取和写入 设计思想 主要过程...

MATLAB算法实战应用案例精讲-【人工智能】边缘计算(补充篇)

目录 前言 算法原理 传统边缘检测算子 构建通用的边缘检测算子 图...

Linux学习-HIS系统部署(1)

Git安装 #安装中文支持&#xff08;选做&#xff09; [rootProgramer ~]# echo $LANG #查看当前系统语言及编码 en_US.UTF-8 [rootProgramer ~]# yum -y install langpacks-zh_CN.noarch #安装中文支持 [rootProgramer ~]# vim /etc/locale.co…...

Cairo介绍及源码构建安装(3)

接前一篇文章&#xff1a;Cairo介绍及源码构建安装&#xff08;2&#xff09; 四、Cairo构建与安装 2. 配置 BLFS中给出的命令为&#xff1a; ./configure --prefix/usr \--disable-static \--enable-tee 这里将“--prefix”选项由“/usr”调整为“/usr/local”&#x…...

Mac电脑信息大纲记录软件 OmniOutliner 5 Pro for Mac中文

OmniOutliner 5 Pro是一款专业级的Mac大纲制作工具&#xff0c;它可以帮助用户更好地组织和管理信息&#xff0c;以及制作精美的大纲。以下是OmniOutliner 5 Pro的主要功能和特点&#xff1a; 强大的大纲组织和管理功能。OmniOutliner 5 Pro为用户提供了多层次的大纲结构&…...

linux设置应用开机自启(通用:mysql、jar、nginx、solr...)

1. 业务场景 用于单机生产环境&#xff0c;防止服务器断电或者强制重启导致的服务下线。 2. 实现方案 对于无状态服务&#xff0c;可容器部署设置 restart: always&#xff0c;systemctl eable docker对于有状态服务&#xff0c;可编写自启脚本&#xff0c;如下 ① 编写执行…...

Offset Explorer(Kafka消息可视化工具)报invalid hex digit ‘{‘错误解决方法

解决办法&#xff1a; 根据代码的实际情况&#xff0c;设置成对应的值。设置完成后点update、refresh更新。...

深度学习:模型训练过程中Trying to backward through the graph a second time解决方案

1 问题描述 在训练lstm网络过程中出现如下错误&#xff1a; Traceback (most recent call last):File "D:\code\lstm_emotion_analyse\text_analyse.py", line 82, in <module>loss.backward()File "C:\Users\lishu\anaconda3\envs\pt2\lib\site-packag…...

【数值计算方法】非线性方程(组)和最优化问题的计算方法:非线性方程式求根的二分法、迭代法、Newton 迭代法及其Python实现

目录 一、非线性方程式求根 1、二分法&#xff08;Bisection Method、对分法&#xff09; a. 理论简介 b. python实现 2、迭代法&#xff08;Iterative Method&#xff09; a. 理论简介 b. python实现 3、Newton 迭代法&#xff08;Newtons Method&#xff09; a. 理论…...

linux主机名

title: linux主机名 createTime: 2020-10-29 18:05:52 updateTime: 2020-10-29 18:05:52 categories: linux tags: Linux系统的主机名 查询主机名 hostnamehostnamectl 修改主机名 hostnamectl set-hostname <newhostname>...

前端uniapp图片select联动文本切换

图片 代码 <template><!-- 这个是uniapp的下拉框 --><uni-data-select v-model"pay_type" :localdata"range" change"handleSelectChange"></uni-data-select><!-- 图片 --><image :src"dynamicImage&qu…...

java - 包装类

目录 前言 一 什么是包装类? 1.获取包装类的两种方式(了解)(已经淘汰) 2.两种方式获取对象的区别(掌握) 3.自动装箱&&自动装箱 4.Integer常用方法 总结 前言 大家好,今天给大家讲解一下包装类 一 什么是包装类? 在Java中&#xff0c;每个基本数据类型都有对应…...

防火墙基础

目录 1、 防火墙支持那些NAT技术&#xff0c;主要应用场景是什么&#xff1f; 2、当内网PC通过公网域名解析访问内网服务器时&#xff0c;会存在什么问题&#xff0c;如何解决&#xff1f; 3、防火墙使用VRRP实现双机热备时会遇到什么问题&#xff0c;如何解决&#xff1f; 4…...

服务断路器_Resilience4j的断路器

断路器&#xff08;CircuitBreaker&#xff09;相对于前面几个熔断机制更复杂&#xff0c;CircuitBreaker通常存在三种状态&#xff08;CLOSE、OPEN、HALF_OPEN&#xff09;&#xff0c;并通过一个时间或数量窗口来记录当前的请求成功率或慢速率&#xff0c;从而根据这些指标来…...

微信小程序学习笔记3.0

第3章 资讯类:仿今日头条微信小程序 3.1 需求描述及交互分析 需求描述 仿今日头条微信小程序,要具有以下功能。 (1)首页新闻频道框架设计,包括底部标签导航设计、新闻检索框设计及新闻频道滑动效果设计。 (2)首页新闻内容设计,包括新闻标题、新闻图片及新闻评论设计…...

nginx 反向代理 负载均衡 动静分离

一样东西的诞生通常都是为了解决某些问题&#xff0c;对于 Nginx 而言&#xff0c;也是如此。 比如&#xff0c;你出于无聊写了一个小网站&#xff0c;部署到 tomcat 之后可以正常访问 但是后来&#xff0c;你的这个小网站因为内容很诱人逐步的火了&#xff0c;用户越来越多&a…...

Codeanalysis(tca)后端二次开发环境搭建

先试用官方脚本文件件quick_install.sh将整个项目启动起来&#xff0c;然后到每个微服务下查看每个服务的pid进程&#xff0c;需要调试哪个先把对应的微服务关闭手动启动&#xff0c;具体启动流程如下&#xff1a; cd 到项目根目录下 source script\config.sh # 激活系统环境…...

JS前端树形Tree数据结构使用

前端开发中会经常用到树形结构数据&#xff0c;如多级菜单、商品的多级分类等。数据库的设计和存储都是扁平结构&#xff0c;就会用到各种Tree树结构的转换操作&#xff0c;本文就尝试全面总结一下。 如下示例数据&#xff0c;关键字段id为唯一标识&#xff0c;pid为父级id&am…...

Automation Anywhere推出新的生成式AI自动化平台,加速提高企业生产力

在9 月 19 日的Imagine 2023 大会上&#xff0c;智能自动化领域的领导者 Automation Anywhere 宣布对其自动化平台进行扩展。推出了新的 Responsible AI Layer&#xff0c;并宣布了四项关键产品更新&#xff0c;包括全新的 Autopilot&#xff0c;它可以利用生成式 AI &#xff…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...