基于R的linkET包qcorrplot可视化Mantel test相关性网络热图分析correlation heatmap
写在前面
需求是对瘤胃宏基因组结果鉴定到的差异菌株与表观指标、瘤胃代谢组、血清代谢组、牛奶代谢组中有差异的部分进行关联分析,效果图如下:

数据准备
逗号分隔的csv格式文件,两个表格,一个是每个样本对应的表观指标数据,另一个是每个样本对应的菌群丰度,我这里用的是genus水平
- 需要关联的表观数据
rumen.csv

- 不同样本的菌群丰度
genus.csv

R包linkET可视化
- 装包
install.pakages("linkET")
library(linkET)
如果报错R版本有问题装不上(我的4.3.1版本R出现了这个报错)请尝试:
install.packages("devtools")
devtools::install_github("Hy4m/linkET", force = TRUE)
packageVersion("linkET")
- 读取数据
library(ggplot2)
rumen <- read.csv("rumen.csv",sep=",",row.name=1,stringsAsFactors = FALSE,check.names = FALSE)
genus <- read.csv("genus.csv",sep=",",row.name=1,stringsAsFactors = FALSE,check.names = FALSE)
#如果报错row.names重复错误请检查数据格式是否为csv
rumen.csv组内相关系数
matrix_data(list(rumen = rumen)) %>% as_md_tbl()
correlate(rumen) %>% as_matrix_data()
correlate(rumen) %>% as_md_tbl()correlate(rumen) %>% as_md_tbl() %>% qcorrplot() +geom_square()#如果对“%>%”功能报错,装具有此功能的包即可,比如dplyrlibrary(vegan)
correlate(rumen, genus, method = "spearman") %>% qcorrplot() +geom_square() +geom_mark(sep = '\n',size = 3, sig_level = c(0.05, 0.01, 0.001),sig_thres = 0.05, color = 'white') + #添加显著性和相关性值scale_fill_gradientn(colours = RColorBrewer::brewer.pal(11, "RdBu"))

- 两个表格进行关联生成相关性矩阵图,带显著性标记
library(vegan)
correlate(rumen, genus, method = "spearman") %>% qcorrplot() +geom_square() +geom_mark(sep = '\n',size = 3, sig_level = c(0.05, 0.01, 0.001),sig_thres = 0.05, color = 'white') + #添加显著性和相关性值scale_fill_gradientn(colours = RColorBrewer::brewer.pal(11, "RdBu"))
- 加工可视化
library(dplyr)
mantel <- mantel_test(rumen, genus,spec_select = list(Milk_yeild=1,Milk_fat=2,Urea_Nitrogen=3,Butyric_acid=4,Valeric_acid=5,BUN=6,T_AOC=7,SOD=8,MDA=9,IgA=10,IgG=11))%>% mutate(rd = cut(r, breaks = c(-Inf, 0.5, Inf),labels = c("< 0.5", ">= 0.5")),pd = cut(p, breaks = c(-Inf, 0.01, 0.05, Inf),labels = c("< 0.01", "0.01 - 0.05", ">= 0.05")))qcorrplot(correlate(genus), type = "lower", diag = FALSE) +geom_square() +geom_mark(sep = '\n',size = 1.8, sig_level = c(0.05, 0.01, 0.001),sig_thres = 0.05,color="white") +geom_couple(aes(colour = pd, size = rd), data = mantel, curvature = nice_curvature()) +scale_fill_gradientn(colours = RColorBrewer::brewer.pal(11, "RdBu")) +scale_size_manual(values = c(0.5, 1, 2)) +scale_colour_manual(values = color_pal(3)) +guides(size = guide_legend(title = "Mantel's r",override.aes = list(color = "black"), order = 2),colour = guide_legend(title = "Mantel's p", override.aes = list(size = 3), order = 1),fill = guide_colorbar(title = "Pearson's r", order = 3))

- 不显著的灰色连接线部分也可以去掉让画面更干净。其余细节去AI加工即可。
相关文章:
基于R的linkET包qcorrplot可视化Mantel test相关性网络热图分析correlation heatmap
写在前面 需求是对瘤胃宏基因组结果鉴定到的差异菌株与表观指标、瘤胃代谢组、血清代谢组、牛奶代谢组中有差异的部分进行关联分析,效果图如下: 数据准备 逗号分隔的csv格式文件,两个表格,一个是每个样本对应的表观指标数据&…...
IOTDB的TsFile底层设计
目录 概述 数据模型 数据结构 元数据注册 读取和写入 设计思想 主要过程...
MATLAB算法实战应用案例精讲-【人工智能】边缘计算(补充篇)
目录 前言 算法原理 传统边缘检测算子 构建通用的边缘检测算子 图...
Linux学习-HIS系统部署(1)
Git安装 #安装中文支持(选做) [rootProgramer ~]# echo $LANG #查看当前系统语言及编码 en_US.UTF-8 [rootProgramer ~]# yum -y install langpacks-zh_CN.noarch #安装中文支持 [rootProgramer ~]# vim /etc/locale.co…...
Cairo介绍及源码构建安装(3)
接前一篇文章:Cairo介绍及源码构建安装(2) 四、Cairo构建与安装 2. 配置 BLFS中给出的命令为: ./configure --prefix/usr \--disable-static \--enable-tee 这里将“--prefix”选项由“/usr”调整为“/usr/local”&#x…...
Mac电脑信息大纲记录软件 OmniOutliner 5 Pro for Mac中文
OmniOutliner 5 Pro是一款专业级的Mac大纲制作工具,它可以帮助用户更好地组织和管理信息,以及制作精美的大纲。以下是OmniOutliner 5 Pro的主要功能和特点: 强大的大纲组织和管理功能。OmniOutliner 5 Pro为用户提供了多层次的大纲结构&…...
linux设置应用开机自启(通用:mysql、jar、nginx、solr...)
1. 业务场景 用于单机生产环境,防止服务器断电或者强制重启导致的服务下线。 2. 实现方案 对于无状态服务,可容器部署设置 restart: always,systemctl eable docker对于有状态服务,可编写自启脚本,如下 ① 编写执行…...
Offset Explorer(Kafka消息可视化工具)报invalid hex digit ‘{‘错误解决方法
解决办法: 根据代码的实际情况,设置成对应的值。设置完成后点update、refresh更新。...
深度学习:模型训练过程中Trying to backward through the graph a second time解决方案
1 问题描述 在训练lstm网络过程中出现如下错误: Traceback (most recent call last):File "D:\code\lstm_emotion_analyse\text_analyse.py", line 82, in <module>loss.backward()File "C:\Users\lishu\anaconda3\envs\pt2\lib\site-packag…...
【数值计算方法】非线性方程(组)和最优化问题的计算方法:非线性方程式求根的二分法、迭代法、Newton 迭代法及其Python实现
目录 一、非线性方程式求根 1、二分法(Bisection Method、对分法) a. 理论简介 b. python实现 2、迭代法(Iterative Method) a. 理论简介 b. python实现 3、Newton 迭代法(Newtons Method) a. 理论…...
linux主机名
title: linux主机名 createTime: 2020-10-29 18:05:52 updateTime: 2020-10-29 18:05:52 categories: linux tags: Linux系统的主机名 查询主机名 hostnamehostnamectl 修改主机名 hostnamectl set-hostname <newhostname>...
前端uniapp图片select联动文本切换
图片 代码 <template><!-- 这个是uniapp的下拉框 --><uni-data-select v-model"pay_type" :localdata"range" change"handleSelectChange"></uni-data-select><!-- 图片 --><image :src"dynamicImage&qu…...
java - 包装类
目录 前言 一 什么是包装类? 1.获取包装类的两种方式(了解)(已经淘汰) 2.两种方式获取对象的区别(掌握) 3.自动装箱&&自动装箱 4.Integer常用方法 总结 前言 大家好,今天给大家讲解一下包装类 一 什么是包装类? 在Java中,每个基本数据类型都有对应…...
防火墙基础
目录 1、 防火墙支持那些NAT技术,主要应用场景是什么? 2、当内网PC通过公网域名解析访问内网服务器时,会存在什么问题,如何解决? 3、防火墙使用VRRP实现双机热备时会遇到什么问题,如何解决? 4…...
服务断路器_Resilience4j的断路器
断路器(CircuitBreaker)相对于前面几个熔断机制更复杂,CircuitBreaker通常存在三种状态(CLOSE、OPEN、HALF_OPEN),并通过一个时间或数量窗口来记录当前的请求成功率或慢速率,从而根据这些指标来…...
微信小程序学习笔记3.0
第3章 资讯类:仿今日头条微信小程序 3.1 需求描述及交互分析 需求描述 仿今日头条微信小程序,要具有以下功能。 (1)首页新闻频道框架设计,包括底部标签导航设计、新闻检索框设计及新闻频道滑动效果设计。 (2)首页新闻内容设计,包括新闻标题、新闻图片及新闻评论设计…...
nginx 反向代理 负载均衡 动静分离
一样东西的诞生通常都是为了解决某些问题,对于 Nginx 而言,也是如此。 比如,你出于无聊写了一个小网站,部署到 tomcat 之后可以正常访问 但是后来,你的这个小网站因为内容很诱人逐步的火了,用户越来越多&a…...
Codeanalysis(tca)后端二次开发环境搭建
先试用官方脚本文件件quick_install.sh将整个项目启动起来,然后到每个微服务下查看每个服务的pid进程,需要调试哪个先把对应的微服务关闭手动启动,具体启动流程如下: cd 到项目根目录下 source script\config.sh # 激活系统环境…...
JS前端树形Tree数据结构使用
前端开发中会经常用到树形结构数据,如多级菜单、商品的多级分类等。数据库的设计和存储都是扁平结构,就会用到各种Tree树结构的转换操作,本文就尝试全面总结一下。 如下示例数据,关键字段id为唯一标识,pid为父级id&am…...
Automation Anywhere推出新的生成式AI自动化平台,加速提高企业生产力
在9 月 19 日的Imagine 2023 大会上,智能自动化领域的领导者 Automation Anywhere 宣布对其自动化平台进行扩展。推出了新的 Responsible AI Layer,并宣布了四项关键产品更新,包括全新的 Autopilot,它可以利用生成式 AI ÿ…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?
FTP(File Transfer Protocol)本身是一个基于 TCP 的协议,理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况,主要原因包括: ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...
CMS内容管理系统的设计与实现:多站点模式的实现
在一套内容管理系统中,其实有很多站点,比如企业门户网站,产品手册,知识帮助手册等,因此会需要多个站点,甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...
二叉树-144.二叉树的前序遍历-力扣(LeetCode)
一、题目解析 对于递归方法的前序遍历十分简单,但对于一位合格的程序猿而言,需要掌握将递归转化为非递归的能力,毕竟递归调用的时候会调用大量的栈帧,存在栈溢出风险。 二、算法原理 递归调用本质是系统建立栈帧,而非…...
