当前位置: 首页 > news >正文

TensorFlow入门(八、TensorBoard可视化工具的应用)

TensorBoard常用函数和类icon-default.png?t=N7T8http://t.csdn.cn/Hqi9c

TensorBoard可视化的过程:

①确定一个整体的图表,明确从这个图表中获取哪些数据的信息

②确定在程序的哪些节点、以什么样的方式进行汇总数据的运算,以记录信息,比如在反向传播定义以后,使用tf.summary.scalar记录损失值的变换

③运行所有的summary节点。由于一个程序中经常会有多个summary节点,为了减少一个一个手动启动的繁琐,可以使用tf.summary.merge_all将所有summary节点合并成一个节点,在启动运行

④使用tf.summary.FileWriter将运行后输出的数据保存到本地磁盘中

⑤运行整个程序,完成执行后,win+R打开终端,输入tensorboard --logdir 文件上一级路径

以下是具体操作:

        示例代码如下:

# -*- coding: utf-8 -*-
"""
Created on Mon Sep 25 20:07:18 2023@author: ASUS
"""import tensorflow.compat.v1 as tf
import numpy as np
import matplotlib.pyplot as plt
import ostf.compat.v1.disable_eager_execution()#这个函数用于禁用 TensorFlow 2 中的即时执行模式,以便能够使用 TensorFlow 1.x 的计算图执行方式。#1.准备数据
train_X = np.linspace(-1, 1,100)#train_X 是一个从 -1 到 1 的等间距数组,用作输入特征。
train_Y = 5 * train_X + np.random.randn(*train_X.shape) * 0.7#train_Y 是根据 train_X 生成的目标值,在真实值的基础上加上了一些噪声。#2.搭建模型
#通过占位符定义
X = tf.placeholder("float")#X 和 Y 是 TensorFlow 的占位符(Placeholder),用于在执行时提供输入和标签数据。
Y = tf.placeholder("float")
#定义学习参数的变量
W = tf.Variable(tf.compat.v1.random_normal([1]),name="weight")#W 和 b 是学习参数的变量,可以被模型训练调整。
b = tf.Variable(tf.zeros([1]),name="bias")
#定义运算
z = tf.multiply(X,W) + b#z 是通过将输入特征 X 与权重 W 相乘并加上偏差 b 得到的预测值。
#定义损失函数
cost = tf.reduce_mean(tf.square(Y - z))#cost 是损失函数,计算预测值与真实值之间的平方差的平均值。
#定义学习率
learning_rate = 0.01#learning_rate 是学习率,用来控制优化算法在每次迭代中更新参数的步长。
#设置优化函数
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)#optimizer 是梯度下降优化器,用于最小化损失函数。#3.迭代训练
#初始化所有变量
init = tf.global_variables_initializer()
#定义迭代参数
training_epochs = 20#training_epochs 是迭代训练的轮数。
display_step = 2#display_step 是控制训练过程中打印输出的步长。#定义保存路径
savedir = "log4/"#启动Session
with tf.Session() as sess:#with tf.Session() as sess: 创建一个会话,在该会话中执行计算图操作。sess.run(init)#sess.run(init) 运行初始化操作,初始化所有变量。tf.summary.scalar("loss", cost)#合并所有的summarymerged_summary_op = tf.summary.merge_all()#创建summary_write用于写文件summary_writer = tf.summary.FileWriter(os.path.join(savedir,'summary_log'),sess.graph)for epoch in range(training_epochs):for(x,y) in zip(train_X,train_Y):sess.run(optimizer,feed_dict={X:x,Y:y})#sess.run(optimizer,feed_dict={X:x,Y:y}) 执行一次优化器操作,将当前的输入特征 x 和标签值 y 传入模型。summary_str = sess.run(merged_summary_op,feed_dict = {X:x,Y:y})summary_writer.add_summary(summary_str,epoch)if epoch % display_step == 0:#每隔 display_step 轮迭代打印一次损失值和当前的参数值。loss=sess.run(cost,feed_dict={X:train_X,Y:train_Y})#测试模型print("Epoch:",epoch+1,"cost=",loss,"W=",sess.run(W),"b=",sess.run(b))print("Finished!")#使用 matplotlib 库绘制训练数据点和拟合直线。plt.plot(train_X,train_Y,'ro',label='Original data')#绘制原始数据点。plt.plot(train_X,sess.run(W)*train_X+sess.run(b),'--',label='Fittedline')#绘制拟合的直线。plt.legend()#添加图例。plt.show()#显示图形。#4.利用模型print("x=0.2,z=",sess.run(z,feed_dict={X:0.2}))#使用训练好的模型,传入输入特征 0.2 来计算预测值 z。

        运行后会生成文件如下

        win+R打开终端,输入tensorboard --logdir C:\Users\ASUS\.spyder-py3\log4\summary_log

        复制其中的http://localhost:6006/,打开浏览器跳转来到tensorboard可视化界面,如下:

Tensorboard显示图片示例icon-default.png?t=N7T8http://t.csdn.cn/Ok1w5

相关文章:

TensorFlow入门(八、TensorBoard可视化工具的应用)

TensorBoard常用函数和类http://t.csdn.cn/Hqi9c TensorBoard可视化的过程: ①确定一个整体的图表,明确从这个图表中获取哪些数据的信息 ②确定在程序的哪些节点、以什么样的方式进行汇总数据的运算,以记录信息,比如在反向传播定义以后,使用tf.summary.scalar记录损失值的变…...

升级targetSdkVersion至33(以及迁移至Androidx)

1.设置 android.useAndroidXtrue 和 android.enableJetifiertrue 2.一键迁移至androidx:Refactor -> Migrate to Androidx 3.手动修改未能自动迁移到androidx的部分: android.support.v4.view.ViewPager.PageTransformer -> androidx.viewpager.wi…...

python3.11版本pip install ddddocr调用时报错got an unexpected keyword argument ‘det‘ 解决

一、如图出现如下问题 ddddocr.__init__() got an unexpected keyword argument det出现问题原因:python3.11默认安装版本就旧版的ddddocr1.0的,所以导致如下报错 二、解决方案一(推荐) python3.11的环境直接安装这个即可&…...

代理IP与Socks5代理:跨界电商之安全防护与智能数据引擎

第一部分:跨界电商的兴起与网络安全挑战 1.1 跨界电商的崭露头角 跨界电商已经成为全球贸易的新引擎,企业纷纷踏上了拓展国际市场的征程。 1.2 网络安全的不容忽视 跨界电商的增长也伴随着网络安全威胁的增加。黑客攻击、数据泄露和欺诈行为等风险呈…...

如何评估一个HR是否专业?看这些标准

HR在遇到优秀的人才时,以往的招聘中,我们总以惯性思维寻找吸引人才的突破口,诸如体现薪酬优厚、突出平台优势甚至提高面试话术等,却忽略了面试官本人的人格魅力,本身就是公司招聘的形象代言,因为优秀的面试…...

WordPress主题开发( 八)之—— 模板循环详细用法

WordPress 主题开发教程手册 — 模板循环 WordPress 主题开发中,模板循环是一个非常关键的概念,它负责默认机制来输出文章内容。模板循环会遍历当前页面获取的所有文章,然后使用主题中的模板标签将它们格式化并输出。 模板循环的应用 Word…...

QT : 完成绘制时钟

1.头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QPainter> #include <QTimer> #include <QTime> #include <QPaintEvent> #include <QDebug> #include <QBrush>QT_BEGIN_NAMESPACE namespace Ui { class…...

香港云服务器和日本云服务器哪个好?(详细对比)

​  购置海外服务器时&#xff0c;您是在乎网络速度?价格?稳定性?当这几个因素同时存在&#xff0c;我们该如何选择?本篇针对海外热门的两个地区&#xff0c;中国香港和日本&#xff0c;这两种云服务器谁优谁劣?各有什么亮点?逐一进行对比分析。 一、速度上来看 中国香…...

Cross Attention和 Self- Attention 的区别?

Cross Attention和Self-Attention都是深度学习中常用的注意力机制&#xff0c;用于处理序列数据&#xff0c;其中Self-Attention用于计算输入序列中每个元素之间的关系&#xff0c;Cross Attention则是计算两个不同序列中的元素之间的关系。它们的主要区别在于计算注意力分数时…...

《从零开始的Java世界》02面向对象(基础)

《从零开始的Java世界》系列主要讲解Javase部分&#xff0c;从最简单的程序设计到面向对象编程&#xff0c;再到异常处理、常用API的使用&#xff0c;最后到注解、反射&#xff0c;涵盖Java基础所需的所有知识点。学习者应该从学会如何使用&#xff0c;到知道其实现原理全方位式…...

pve关闭windows虚拟机慢

背景&#xff1a; 在web界面关闭windows虚拟机一直转圈&#xff0c;使用命令行关闭报错 qm stop 155 trying to acquire lock... cant lock file /var/lock/qemu-server/lock-155.conf - got timeout解决 删除lock&#xff0c;然后用命令行重新关闭 rm /var/lock/qemu-serve…...

【Django】 rest_framework接口开发流程及接口功能组成

rest_framework接口开发流程及接口功能组成 使用restframework框架开发接口&#xff0c;方式应该有6、7种&#xff0c;每个人的习惯不同&#xff0c;用的方法也不一样&#xff0c;再次不再一一详述。 我比较常用&#xff1a;ModelSerializerGenericAPIView 原因是用视图函数装饰…...

Kafka Log存储解析以及索引机制

1.概述 在Kafka架构&#xff0c;不管是生产者Producer还是消费者Consumer面向的都是Topic。Topic是逻辑上的概念&#xff0c;而Partition是物理上的概念。每个Partition逻辑上对应一个log文件&#xff0c;该log文件存储是Producer生产的数据。Producer生产的数据被不断追加到该…...

广告电商模式:探索新商业模式,实现三方共赢

随着互联网技术的发展&#xff0c;电商行业正在不断探索新的商业模式。其中&#xff0c;广告电商模式是一种创新的方式&#xff0c;它成功地将广告和电商相结合&#xff0c;实现了三方共赢的局面。一、广告电商模式的定义广告电商模式&#xff0c;顾名思义&#xff0c;是一种将…...

动态线程池框架DynamicTp v1.1.4大版本发布,新增若干实用特性

DynamicTp 简介 DynamicTp 是一个基于配置中心实现的轻量级动态线程池监控管理工具&#xff0c;主要功能可以总结为动态调参、通知报警、运行监控、三方包线程池管理等几大类。 DynamicTp 特性 代码零侵入&#xff1a;我们改变了线程池以往的使用姿势&#xff0c;所有配置均放…...

无线通信——Mesh自组网的多跳性

Mesh的多跳性 Mesh网络具备多跳性。什么是多跳性呢&#xff1f;上面说过&#xff0c;每一个具备Mesh网络的设备都是独立的节点。因此&#xff0c;当我发出一条数据时&#xff0c;这些数据会通过跳跃到达不同的网络节点&#xff0c;数据从一个节点跳到另一个节点&#xff0c;直到…...

QA 云计算实验问题汇总

Q Win11中VMware虚拟网卡有感叹号 2023-9-27一位同学的win11的两个VMware17的虚拟网卡都有感叹号 A 清除注册表 步骤1 关闭VMWare虚拟化软件 步骤2 使用CCleaner pro 清理注册表 步骤3 重启系统 步骤4 VMware虚拟网卡上的感叹号消失。 Q Win11上的VisualBox的网卡消失了…...

VEX —— Functions|Groups

目录 expandpointgroup —— 返回点组内点号 expandprimgroup —— 返回面组内面号 expandvertexgroup —— 返回顶点组内顶点号 inpointgroup —— 判断指定点是否在点组内 inprimgroup —— 判断指定面是否在面组内 invertexgroup —— 判断指定顶点是否在顶点组内 np…...

JavaSE18——接口

接口(interface) 1 概述 在Java中&#xff0c;接口是一种抽象数据类型&#xff0c;它定义了一组方法&#xff08;没有方法体&#xff09;&#xff0c;但没有实现这些方法的具体代码。接口可以看作是一种合约&#xff0c;它规定了类应该具有的行为。类可以实现一个或多个接口&…...

杭州亚运会开幕式惊现数字人火炬手,动捕设备迸发动画制作新动能

在第十九届亚运会开幕式上&#xff0c;首次出现了“数字人”点火形式&#xff0c;打造了亚运史上首个数字点火仪式&#xff0c;这种点火方式是一种颠覆性创作的同时&#xff0c;这也是裸眼3D技术、现实增强和AI人工智能技术的完美结合。 此次数字火炬手的背后是采用了动捕设备&…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...