当前位置: 首页 > news >正文

嵌入式Linux应用开发-基础知识-第三章 LED原理图-GPIO及操作

嵌入式Linux应用开发-基础知识-第三章 LED原理图-GPIO及操作

  • 第三章 硬件知识_LED 原理图
    • 3.1 先来讲讲怎么看原理图
  • 第四章 普适的 GPIO 引脚操作方法
    • 4.1 GPIO 模块一般结构
    • 4.2 GPIO 寄存器操作
    • 4.3 GPIO 的其他功能:防抖动、中断、唤醒
  • 第五章 具体单板的 GPIO 操作方法
    • 5.1 AM335X 的 GPIO 操作方法
      • 5.1.1 AM335X 的 GPIO 模块结构
      • 5.1.2 AM335X 的 GPIO 相关寄存器
      • 5.1.3 set-and-clear 协议
    • 5.2 RK3288 的 GPIO 操作方法
      • 5.2.1 RK3288 的 GPIO 模块结构
      • 5.2.2 RK3288 的 GPIO 相关寄存器
    • 5.3 RK3399 的 GPIO 操作方法
      • 5.3.1 RK3399 的 GPIO 模块结构
      • 5.3.2 RK3399 的 GPIO 相关寄存器
    • 5.4 IMX6ULL 的 GPIO 操作方法
      • 5.4.1 IMX6ULL 的 GPIO 模块结构
      • 5.4.2 CCM 用于设置是否向 GPIO 模块提供时钟
      • 5.4.3 IOMUXC:引脚的模式(Mode、功能)
      • 5.4.4 GPIO 模块内部
      • 5.4.5 读 GPIO
      • 5.4.6 写 GPIO

第三章 硬件知识_LED 原理图

当我们学习 C 语言的时候,我们会写个 Hello 程序。
那当我们写 ARM 程序,也该有一个简单的程序引领我们入门,这个程序就是点亮 LED。

我们怎样去点亮一个 LED 呢?
分为三步:
1.看原理图,确定控制 LED 的引脚;
2.看主芯片的芯片手册,确定如何设置控制这个引脚;
3.写程序;

3.1 先来讲讲怎么看原理图

LED 样子有很多种,像插脚的,贴片的。
在这里插入图片描述
它们长得完全不一样,因此我们在原理图中将它抽象出来。

点亮 LED 需要通电源,同时为了保护 LED,加个电阻减小电流。
控制 LED 灯的亮灭,可以手动开关 LED,但在电子系统中,不可能让人来控制开关,通过编程,利用芯片的引脚去控制开关。
在这里插入图片描述
LED 的驱动方式,常见的有四种。
方式 1:使用引脚输出 3.3V 点亮 LED,输出 0V 熄灭 LED。
方式 2:使用引脚拉低到 0V 点亮 LED,输出 3.3V 熄灭 LED。

有的芯片为了省电等原因,其引脚驱动能力不足,这时可以使用三极管驱动。
方式 3:使用引脚输出 1.2V 点亮 LED,输出 0V 熄灭 LED。
方式 4:使用引脚输出 0V 点亮 LED,输出 1.2V 熄灭 LED。

在这里插入图片描述
由此,主芯片引脚输出高电平/低电平,即可改变 LED 状态,而无需关注 GPIO 引脚输出的是 3.3V 还是1.2V。
所以简称输出 1 或 0:
逻辑 1–>高电平
逻辑 0–>低电平

第四章 普适的 GPIO 引脚操作方法

GPIO: General-purpose input/output,通用的输入输出口

4.1 GPIO 模块一般结构

a. 有多组 GPIO,每组有多个 GPIO
b. 使能:电源/时钟
c. 模式(Mode):引脚可用于 GPIO 或其他功能
d. 方向:引脚 Mode 设置为 GPIO 时,可以继续设置它是输出引脚,还是输入引脚
e. 数值:对于输出引脚,可以设置寄存器让它输出高、低电平
对于输入引脚,可以读取寄存器得到引脚的当前电平

4.2 GPIO 寄存器操作

a. 芯片手册一般有相关章节,用来介绍:power/clock
可以设置对应寄存器使能某个 GPIO 模块(Module)
有些芯片的 GPIO 是没有使能开关的,即它总是使能的
b. 一个引脚可以用于 GPIO、串口、USB 或其他功能,
有对应的寄存器来选择引脚的功能
c. 对于已经设置为 GPIO 功能的引脚,有方向寄存器用来设置它的方向:输出、输入
d. 对于已经设置为 GPIO 功能的引脚,有数据寄存器用来写、读引脚电平状态

GPIO 寄存器的 2 种操作方法:
原则:不能影响到其他位
1) 直接读写:读出、修改对应位、写入
要设置 bit n:
val = data_reg;
val = val | (1<<n);
data_reg = val;
要清除 bit n:
val = data_reg;
val = val & ~(1<<n);
data_reg = val;

2) set-and-clear protocol:
set_reg, clr_reg, data_reg 三个寄存器对应的是同一个物理寄存器,
要设置 bit n:set_reg = (1<<n);
要清除 bit n:clr_reg = (1<<n);

4.3 GPIO 的其他功能:防抖动、中断、唤醒

后续章节再介绍

第五章 具体单板的 GPIO 操作方法

请使用 GIT 下载文档后,看下图红框所示目录中各板子对应的文档及图片。
网盘中相同名字的目录下也有对应的视频。
在这里插入图片描述
为方便学习,在本文档中也把上述 GIT 目录中的文档添加进来了。

5.1 AM335X 的 GPIO 操作方法

GPIO: General-purpose input/output,通用的输入输出口
PRCM: Power, Reset, and Clock Management (电源、复位、时钟管理器)
CM: Control Module(控制模块) 或 Clock Module (时钟模块)
PRM_PER: Power Reset Module Peripheral Registers(电源/复位模块中关于外设的寄存器)
CM_PER: Clock Module Peripheral Registers (时钟模块中关于外设的寄存器)

5.1.1 AM335X 的 GPIO 模块结构

在这里插入图片描述
有 4 组 GPIO(GPIO0~3),每组有 32 个 GPIO。
GPIO 的控制涉及 3 大模块:PRCM、Control Module、GPIO 模块本身。
① PRCM 用于使能模块:
GPIO0 永远都是使能的,GPIO1~3 可单独控制。
PRCM 模块给 GPIO 模块常供电,只需要使能 GPIO 模块的时钟。
② Control Module 用于设置模式(Mode):
设置引脚的 Mode(即选择功能)、上下拉电阻等;
每一个 GPIO 引脚在 Control Module 中都有一个寄存器,怎么找到这个寄存器?
a. 根据 pin number 确定 pin name
b. 根据 pin name 在 Control Module 中确定寄存器

③ GPIO 模块内部:
方向:引脚 Mode 设置为 GPIO 时,可以继续设置它是输出引脚,还是输入引脚。
数值:对于输出引脚,可以设置寄存器让它输出高、低电平;
对于输入引脚,可以读取寄存器得到引脚的当前电平。

5.1.2 AM335X 的 GPIO 相关寄存器

在这里插入图片描述

5.1.3 set-and-clear 协议

假设某个 GPIO 被设置为输出,怎么设置它的输出电平呢?AM335X 中对于每个 GPIO 模块有一个
GPIO_DATAOUT 寄存器,其中的每一位对应一个引脚,如下:
在这里插入图片描述
要设置某一位时,不能影响到其他位,操作方法是:读出原来的值,修改某一位,把新值写回去。需要3 个步骤才可以设置某一位的值,这效率太低了!

使用 set-and-clear 可以只用一个步骤即可修改某一位的值。
当想设置某一位为 1 时,往 DATA_SETDATAOUT 寄存器中某位写入 1 即可,芯片内部会把对应引脚的电平设置为 1,并且不会影响其他引脚:
在这里插入图片描述
并非所有的芯片都有 set-and-clear 功能,TI 的 AM335X 系列芯片有这功能。

5.2 RK3288 的 GPIO 操作方法

GPIO: General-purpose input/output,通用的输入输出口
CRU: Clock & Reset Unit (时钟和复位单元)
PMU: Power Managerment Unit (电源管理单元)
GRF: General Register Files (通用寄存器文件)

5.2.1 RK3288 的 GPIO 模块结构

在这里插入图片描述
有 9 组 GPIO(GPIO0~8),每组分为最多 4 个小组 port A/B/C/D,每小组最多 8 个 GPIO。理论上每组GPIO 的引脚有 32 个,但是实际上并没有那么多。比如 GPIO0 只有 GPIO0_A0~A7、GPIO0_B0~B7、GPIO0_C0~C2 这些引脚。
GPIO 的控制涉及 4 大模块:CRU、PMU、GRF、GPIO 模块本身。
① CRU 用于设置是否向 GPIO 模块提供时钟:
CRU 的内部结构如下图所示:
在这里插入图片描述

可以设置寄存器使能 GPIOx 的时钟:
a. CRU_CLKGATE17_CON 用于控制 GPIO0;
b. CRU_CLKGATE14_CON 用于控制 GPIO1~8

② PMU 用于控制电源:
电源管理单元里,有多个电源域(power domain,简称为 PM),在一个域下有多个设备。
比如 PD_ALIVE,它下面有这些设备:CRU、GRF、GPIO 1~8、TIMER 或 WDT。
比如 PD_PMU,它下面有这些设备:PMU、SRAM(4K)、Secure GRF、GPIO0。
可见,GPIO0、GPIO1~8 分属不同的 PM。
GPIO0、GPIO1~8 都是常供电的,它们是否工作取决于其时钟是否使能。

③ 设置引脚的模式(Mode、功能):
GPIO0 比较特殊,为了让其引脚用于 GPIO 功能,要设置 PMU 里的相关寄存器。
GPIO1~8 类似,为了让其引脚用于 GPIO 功能,要设置 GRF 里的相关寄存器。

④ GPIO 模块内部:
方向:引脚设置为 GPIO 时,可以继续设置寄存器 GPIO_SWPORTA_DDR 确定它是输出引脚,还是输入引脚。
数值:对于输出引脚,可以设置寄存器 GPIO_SWPORTA_DR 让它输出高、低电平;
对于输入引脚,可以读取寄存器 GPIO_EXT_PORTA 得到引脚的当前电平。

5.2.2 RK3288 的 GPIO 相关寄存器

在这里插入图片描述

5.3 RK3399 的 GPIO 操作方法

GPIO: General-purpose input/output,通用的输入输出口
CRU: Clock & Reset Unit (时钟和复位单元)
PMU: Power Managerment Unit (电源管理单元)
GRF: General Register Files (通用寄存器文件)

5.3.1 RK3399 的 GPIO 模块结构

在这里插入图片描述
有 5 组 GPIO(GPIO0~4),每组分为最多 4 个小组 port A/B/C/D,每小组最多 8 个 GPIO。理论上每组 GPIO 的引脚有 32 个,但是实际上并没有那么多。比如 GPIO0 只有 GPIO0_A0~A7、GPIO0_B0~B5 这些引脚。

① CRU 用于设置是否向 GPIO 模块提供时钟
a. PMUCRU_CLKGATE_CON1 用于控制 GPIO0~1;
b. CRU_CLKGATE_CON31 用于控制 GPIO2~4

② PMU 用于控制电源:
电源管理单元里,有多个电源域(power domain,简称为 PM),在一个域下有多个设备。
比如 PD_ALIVE,它下面有这些设备:CRU、GRF、GPIO 1~4、TIMER 或 WDT。
比如 PD_PMU,它下面有这些设备:cm0、PMU、SRAM(8K)、Secure GRF、GPIO0、PVTM、I2C。
可见,GPIO0、GPIO1~4 分属不同的 PM。
GPIO0、GPIO1~4 都是常供电的。

③ 设置引脚的模式(Mode、功能):
GPIO0~1 比较特殊,为了让其引脚用于 GPIO 功能,要设置 PMU 里的相关寄存器。
GPIO2~4 类似,为了让其引脚用于 GPIO 功能,要设置 GRF 里的相关寄存器。

④ GPIO 模块内部:
方向:引脚设置为 GPIO 时,可以继续设置寄存器 GPIO_SWPORTA_DDR 确定它是输出引脚,还是输入引脚。
数值:对于输出引脚,可以设置寄存器 GPIO_SWPORTA_DR 让它输出高、低电平;
对于输入引脚,可以读取寄存器 GPIO_EXT_PORTA 得到引脚的当前电平。

5.3.2 RK3399 的 GPIO 相关寄存器

在这里插入图片描述

5.4 IMX6ULL 的 GPIO 操作方法

CCM: Clock Controller Module (时钟控制模块)
IOMUXC : IOMUX Controller,IO 复用控制器
GPIO: General-purpose input/output,通用的输入输出口

5.4.1 IMX6ULL 的 GPIO 模块结构

参考资料:芯片手册《Chapter 28: General Purpose Input/Output (GPIO)》
有 5 组 GPIO(GPIO1~GPIO5),每组引脚最多有 32 个,但是可能实际上并没有那么多。
GPIO1 有 32 个引脚:GPIO1_IO0~GPIO1_IO31;
GPIO2 有 22 个引脚:GPIO2_IO0~GPIO2_IO21;
GPIO3 有 29 个引脚:GPIO3_IO0~GPIO3_IO28;
GPIO4 有 29 个引脚:GPIO4_IO0~GPIO4_IO28;
GPIO5 有 12 个引脚:GPIO5_IO0~GPIO5_IO11;

GPIO 的控制涉及 4 大模块:CCM、IOMUXC、GPIO 模块本身,框图如下:

在这里插入图片描述

5.4.2 CCM 用于设置是否向 GPIO 模块提供时钟

参考资料:芯片手册《Chapter 18: Clock Controller Module (CCM)》

GPIOx 要用 CCM_CCGRy 寄存器中的 2 位来决定该组 GPIO 是否使能。哪组 GPIO 用哪个 CCM_CCGR 寄存器来设置,请看上图红框部分。
CCM_CCGR 寄存器中某 2 位的取值含义如下:
在这里插入图片描述
① 00:该 GPIO 模块全程被关闭
② 01:该 GPIO 模块在 CPU run mode 情况下是使能的;在 WAIT 或 STOP 模式下,关闭
③ 10:保留
④ 11:该 GPIO 模块全程使能

GPIO2 时钟控制:
在这里插入图片描述
GPIO1、GPIO5 时钟控制:
在这里插入图片描述

GPIO3 时钟控制:
在这里插入图片描述
GPIO4 时钟控制:
在这里插入图片描述

5.4.3 IOMUXC:引脚的模式(Mode、功能)

参考资料:芯片手册《Chapter 32: IOMUX Controller (IOMUXC)》。
在这里插入图片描述
对于某个/某组引脚,IOMUXC 中有 2 个寄存器用来设置它:
① 选择功能:
IOMUXC_SW_MUX_CTL_PAD_ :Mux pad xxx,选择某个 pad 的功能
IOMUXC_SW_MUX_CTL_GRP_:Mux grp xxx,选择某组引脚的功能
某个引脚,或是某组预设的引脚,都有 8 个可选的模式(alternate (ALT) MUX_MODE)。
在这里插入图片描述
比如:
在这里插入图片描述
② 设置上下拉电阻等参数:
IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>:pad pad xxx,设置某个 pad 的参数
IOMUXC_SW_PAD_CTL_GRP_:pad grp xxx,设置某组引脚的参数
在这里插入图片描述
比如:
在这里插入图片描述

5.4.4 GPIO 模块内部

在这里插入图片描述

我们暂时只需要关心 3 个寄存器:
① GPIOx_GDIR:设置引脚方向,每位对应一个引脚,1-output,0-input
在这里插入图片描述
② GPIOx_DR:设置输出引脚的电平,每位对应一个引脚,1-高电平,0-低电平
在这里插入图片描述
③ GPIOx_PSR:读取引脚的电平,每位对应一个引脚,1-高电平,0-低电平
在这里插入图片描述

5.4.5 读 GPIO

在这里插入图片描述
翻译一下:
① 设置 CCM_CCGRx 寄存器中某位使能对应的 GPIO 模块 // 默认是使能的,上图省略了
② 设置 IOMUX 来选择引脚用于 GPIO
③ 设置 GPIOx_GDIR 中某位为 0,把该引脚设置为输入功能
④ 读 GPIOx_DR 或 GPIOx_PSR 得到某位的值(读 GPIOx_DR 返回的是 GPIOx_PSR 的值)

5.4.6 写 GPIO

在这里插入图片描述
翻译一下:
① 设置 CCM_CCGRx 寄存器中某位使能对应的 GPIO 模块 // 默认是使能的,上图省略了
② 设置 IOMUX 来选择引脚用于 GPIO
③ 设置 GPIOx_GDIR 中某位为 1,把该引脚设置为输出功能
④ 写 GPIOx_DR 某位的值

需要注意的是,你可以设置该引脚的 loopback 功能,这样就可以从 GPIOx_PSR 中读到引脚的有实
电平;你从 GPIOx_DR 中读回的只是上次设置的值,它并不能反应引脚的真实电平,比如可能因为硬件故障导致该引脚跟地短路了,你通过设置 GPIOx_DR 让它输出高电平并不会起效果。

相关文章:

嵌入式Linux应用开发-基础知识-第三章 LED原理图-GPIO及操作

嵌入式Linux应用开发-基础知识-第三章 LED原理图-GPIO及操作 第三章 硬件知识_LED 原理图3.1 先来讲讲怎么看原理图 第四章 普适的 GPIO 引脚操作方法4.1 GPIO 模块一般结构4.2 GPIO 寄存器操作4.3 GPIO 的其他功能&#xff1a;防抖动、中断、唤醒 第五章 具体单板的 GPIO 操作…...

外贸人员如何选择适合的邮箱服务

随着互联网和数字技术的快速发展&#xff0c;电子邮件已经成为商务沟通的主要方式之一。对于外贸人员来说&#xff0c;选择一个合适且高效的邮箱服务至关重要。本文将探讨外贸人员在选择外贸邮箱时应考虑的因素&#xff0c;以便找到最适合自己的解决方案。 “外贸人员如何选择合…...

pt29django教程

文件上传 文件上传必须为POST提交方式&#xff0c; 表单<form>中文件上传时必须有带有enctype"multipart/form-data" 时才会包含文件内容数据。 表单中用<input type"file" name"xxx">标签上传文件 名字xxx对应request.FILES[xx…...

【操作系统笔记七】进程和线程

进程的组成 进程要读取 ELF 文件&#xff0c;那么&#xff1a; ① 要知道文件系统的信息&#xff0c;fs_struct② 要知道打开的文件的信息&#xff0c;files_struct 一个进程除了需要读取 ELF 文件外&#xff0c;还可以读取其他的文件中的数据。 进程中肯定有一个 mm_struct…...

Kakfa高效读写数据

1.概述 无论 kafka 作为 MQ 也好&#xff0c;作为存储层也罢&#xff0c;无非就是两个功能&#xff1a;一是 Producer 生产的数据存到 broker&#xff0c;二是 Consumer 从 broker 读取数据。那 Kafka 的快也就体现在读写两个方面了&#xff0c;本文也是从这两个方面去剖析Kafk…...

C++ 类和对象(4)构造函数

C的目标之一是让使用类对象就像使用标准类型一样&#xff0c;但是常规的初始化语法不适用于类似类型Stock&#xff1a; int year 2001&#xff1b; struct thing {char * pn;int m; }; thing amabob {"wodget",-23}; //有效初始化 Stock hot {"Sukies Autos…...

数据结构————广度寻路算法 Breadth First Search(广度优先算法)

(一)基础补充 二叉树的基本定义 1)二叉树就是度不超过2的树,其每个结点最多有两个子结点 2)二叉树的结点分为左结点和右结点 代码实现二叉树 #include <stdio.h> #include <stdlib.h> struct Node {int data;struct Node* pLeft;struct Node* pRight; }…...

安卓桌面记事本便签软件哪个好用?

日常生活及工作中&#xff0c;很多人常常会遇到一些一闪而现的灵感&#xff0c;这时候拿出手机想要记录时&#xff0c;却找不到记录的软件。在这个快节奏的时代&#xff0c;安卓手机是我们日常生活不可或缺的伙伴。然而&#xff0c;正因为我们的生活如此忙碌&#xff0c;记事变…...

河北吉力宝以步力宝健康鞋引发的全新生活生态商

在当今瞬息万变的商业世界中&#xff0c;成功企业通常都是那些不拘泥于传统、勇于创新的先锋之选。河北吉力宝正是这样一家企业&#xff0c;通过打造一双步力宝健康鞋&#xff0c;他们以功能性智能科技穿戴品为核心&#xff0c;成功创造了一种结合智能康养与时尚潮流的独特产品…...

反射获取Constructor、Field、Method对象

1、获取构造器 Constructor [ ] getConstructor s ( ) 获取全部的构造器&#xff1a;只能获取 public 修饰的构造器 package com.csdn.pojo; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import org.junit.Test; import jav…...

【Netty】 ByteBuf的常用API总结

目录 一、ByteBuf介绍 二、ByteBuf创建 1.池化创建 ByteBufAllocator 2.Unpooled &#xff08;非池化&#xff09;创建ByteBuf 3.ByteBufUtil 操作ByteBuf 三、读取ByteBuf数据 1.get方法 2.read方法 3.set方法 4.write方法 5.索引管理 6.索引查找 7.索引查找 8.其…...

热门敏捷开发管理工具

敏捷管理研发工具可以协助团队更好地进行敏捷开发和管理。以下是几种流行的敏捷管理研发工具&#xff1a; Leangoo&#xff1a;Leangoo领歌一款永久免费的专业敏捷研发管理工具&#xff0c;它覆盖了敏捷项目研发全流程&#xff0c;包括小型团队敏捷开发&#xff0c;规模化敏捷…...

Java分支结构:一次不经意的选择,改变了我的一生。

&#x1f451;专栏内容&#xff1a;Java⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、顺序结构二、分支结构1、if语句2、switch语句 好久不见&#xff01;命运之轮常常在不经意间转动&#xff0c;有时一个看似微…...

Unity中Shader需要了解的点与向量

文章目录 前言一、点和向量的区别二、向量加法减法1、向量加法2、向量减法(可以把向量减法转化为向量加法) 三、向量的模四、标量![在这里插入图片描述](https://img-blog.csdnimg.cn/03df81df3cdf47989a11605d5f5e7da5.png)1、向量与标量的乘法 前言 Unity中Shader了解使用的…...

Java初始化大量数据到Neo4j中(一)

背景&#xff1a;我们项目第一次部署图数据库&#xff0c;要求我们把现有的业务数据以及关系上线第一时间初始化到Neo4j中。开发环境数据量已经百万级别。生成环境数据量更多。 我刚开始开发的时候&#xff0c;由于对Neo4j的了解并没有很多&#xff0c;第一想到的是用代码通用组…...

Excel·VBA日期时间转换提取正则表达式函数

标准日期转换 Function 标准日期(ByVal str$) As DateDim pat$, result$arr Array("(\d{4}).*?(\d{1,2}).*?(\d{1,2})", "(\d{4}).*?(\d{1}).*?(\d{1,2})")If Len(str) < 8 Then pat arr(1) Else pat arr(0)With CreateObject("vbscript.r…...

Django中的缓存

Django中的缓存 缓存的定义 定义: 缓存是-类可以更快的读取数据的介质统称&#xff0c;也指其它可以加快数据读取的存储方式。一般用来存储临时数据&#xff0c;常用介质的是读取速度很快的内存 意义:视图渲染有一定成本&#xff0c;数据库的频繁查询过高;所以对于低频变动的页…...

Python 编程基础 | 第二章-基础语法 | 2.4、while 语句

一、while 语句 1、循环语句 Python 编程中 while 语句用于循环执行程序&#xff0c;其基本形式为&#xff1a; while 判断条件(condition)&#xff1a;执行语句(statements)……例如&#xff1a; count 0 while (count < 9):print(count)count 1while 语句时还有另外两个…...

Qt Charts简介

文章目录 一.图标类型Charts分类1.折线图和样条曲线图2.面积图和散点图3.条形图4.饼图5.误差棒图6.烛台图7.极坐标图 二.坐标轴Axes类型分类三.图例四.图表的互动五.图表样式主题 一.图标类型Charts分类 图表是通过使用系列类的实例并将其添加到QChart或ChartView实例来创建的…...

MinGW、GCC、GNU和MSVC是什么?有什么区别?

在C和C开发中&#xff0c;常常会遇到MinGW、GCC、GNU和MSVC这些术语。本教程将向您解释它们的含义以及它们之间的区别&#xff0c;帮助您更好地理解这些常见的编译工具和开发环境。 MinGW&#xff08;Minimalist GNU for Windows&#xff09;&#xff1a; MinGW是一个开源的软件…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...