当前位置: 首页 > news >正文

LeetCode279. 完全平方数

279. 完全平方数

文章目录

    • [279. 完全平方数](https://leetcode.cn/problems/perfect-squares/)
      • 一、题目
      • 二、题解
        • 方法一:完全背包二维数组
        • 方法二:一维数组(空间复杂度更小的改进版本,最下面的两个版本不需要存储完全平方数)


一、题目

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

提示:

  • 1 <= n <= 104

二、题解

方法一:完全背包二维数组

算法思路

这道题要求找到和为n的完全平方数的最少数量,下面是解题思路的详细说明:

  1. 首先,我们需要找到比n小的最大完全平方数,这个完全平方数不会大于n。我们可以通过遍历从1开始的完全平方数来找到这个数。在代码中,这部分的逻辑是:

    int target = 0;
    int i = 1;
    for(i = 1; i <= n; i++){if(i * i > n){break;}
    }
    target = i - 1;
    

    这里的target就是比n小的最大完全平方数。

  2. 接下来,我们建立一个二维动态规划数组dp,其中dp[i][j]表示使用前i个完全平方数,组成和为j的最少数量。

  3. 我们初始化dp[1][i]为i,因为只能使用一个完全平方数1,所以组成任意数字j的最少数量都是j本身。

  4. 接下来,我们开始填充dp数组的其余部分。我们从2号完全平方数开始,遍历完全平方数的个数(从2到target),然后遍历组成的和(从0到n)。在每个位置(i, j),我们有两个选项:

    • 保持dp[i][j]不变,这意味着我们不使用当前的完全平方数i,所以最少数量与前一个状态dp[i-1][j]相同。
    • 尝试使用当前的完全平方数i,如果可以的话,将dp[i][j]更新为dp[i][j-i*i]+1,这表示使用了一个完全平方数i,所以数量加一。
  5. 最终,dp[target][n]就是答案,即使用前target个完全平方数组成和为n的最少数量。

具体实现

下面是具体的代码实现,已经按照上述思路注释:

class Solution {
public:int numSquares(int n) {// 寻找离n最接近的完全平方数int target = 0;int i = 1;for(i = 1; i <= n; i++){if(i * i > n){break;}}target = i - 1;// 建立dp数组,dp数组的含义是使用前i个完全平方数组成和为j的最少数量vector<vector<int>> dp(target+1, vector<int>(n+1, INT_MAX));// 初始化dp数组,使用一个完全平方数1,组成任意数字j的最少数量都是j本身for(int i = 0; i <= n; i++){dp[1][i] = i;}// 填充dp数组for(int i = 2; i <= target; i++){for(int j = 0; j <= n; j++){dp[i][j] = dp[i-1][j]; // 不使用当前完全平方数iif(j >= i * i && dp[i][j-i*i] != INT_MAX){dp[i][j] = min(dp[i][j], dp[i][j-i*i]+1); // 使用当前完全平方数i}}}return dp[target][n];}
};

算法分析

  • 时间复杂度:遍历完全平方数1到target需要O(target)的时间,填充dp数组需要O(target * n)的时间。所以总时间复杂度是O(target * n)。
  • 空间复杂度:使用了一个二维dp数组,大小为(target+1) * (n+1),所以空间复杂度是O(target * n)。
方法二:一维数组(空间复杂度更小的改进版本,最下面的两个版本不需要存储完全平方数)
class Solution {
public:int numSquares(int n) {// 建立dp数组,dp[i]表示凑成i所需要的最少完全平方数的个数vector<int> dp(n + 1, INT_MAX);dp[0] = 0;// 计算完全平方数列表vector<int> squares;for (int i = 1; i * i <= n; i++) {squares.push_back(i * i);}for (int i = 1; i <= n; i++) {for (int square : squares) {if (i < square) break; // 如果当前数小于完全平方数,则跳出循环dp[i] = min(dp[i], dp[i - square] + 1);}}return dp[n];}
};
class Solution {
public:int numSquares(int n) {vector<int> dp(n + 1, INT_MAX);dp[0] = 0;for (int i = 0; i <= n; i++) { // 遍历背包for (int j = 1; j * j <= i; j++) { // 遍历物品dp[i] = min(dp[i - j * j] + 1, dp[i]);}}return dp[n];}
};
class Solution {
public:int numSquares(int n) {vector<int> dp(n + 1, INT_MAX);dp[0] = 0;for (int i = 1; i * i <= n; i++) { // 遍历物品for (int j = i * i; j <= n; j++) { // 遍历背包dp[j] = min(dp[j - i * i] + 1, dp[j]);}}return dp[n];}
};

相关文章:

LeetCode279. 完全平方数

279. 完全平方数 文章目录 [279. 完全平方数](https://leetcode.cn/problems/perfect-squares/)一、题目二、题解方法一&#xff1a;完全背包二维数组方法二&#xff1a;一维数组&#xff08;空间复杂度更小的改进版本,最下面的两个版本不需要存储完全平方数&#xff09; 一、题…...

【CMake】add_dependencies 命令

【CMake】add_dependencies 原文链接&#xff1a;https://blog.csdn.net/new9232/article/details/125831009 参考链接&#xff1a;https://blog.csdn.net/new9232/article/details/121374943 简介 add_dependencies(<target> [<target-dependency>]...)官方文档…...

go语言unsafe.Pointer与uintptr

以下内容来源go语言圣经 1、unsafe.Pointer&#xff0c;相当于c语言中的void *类型的指针&#xff0c;如果需要运算需要转成uintptr类型的指针 2. uintptr uintptr是一个无符号的整型&#xff0c;它可以保存一个指针地址。 它可以进行指针运算。 uintptr无法持有对象, GC不把…...

ddos打到高防cdn上会发生什么

ddos打到cdn上会发生什么?当DDoS攻击打到CDN上时&#xff0c;肯定会影响网站的可用性和用户体验。具体DDoS攻击打到CDN上时&#xff0c;会发生以下情况&#xff1a; CDN节点负载增加&#xff1a;DDoS攻击会导致大量的无效流量涌入CDN节点&#xff0c;从而使得节点负载增加。这…...

【单调栈】503. 下一个更大元素 II

503. 下一个更大元素 II 解题思路 参考496. 下一个更大元素 I 首先计算nums2的每一个元素的下一个比他大的元素&#xff0c;使用单调栈 将上面的结果和nums2中的每一个元素组成映射map 针对每一个Nums1的元素 查询map 记录map 的value 但是这个是循环的数组元素 class So…...

C++ decltype类型

文章目录 1. 工作原理2. decltype 变量3. decltype 表达式4. decltype 函数 1. 工作原理 随着程序越来越复杂&#xff0c;程序中用到的类型也越来越多&#xff0c;我们有时候不得不去翻阅大量上下文去寻找此数据的类型。   decltype就是一种类型说明符&#xff0c;它的出现…...

【题解】JZOJ3854 分组

JZOJ 3854 题意 有 n n n 个人&#xff0c;每个人有地位 r i r_i ri​ 和年龄 a i a_i ai​&#xff0c;对于一个若干人组成的小组&#xff0c;定义其队长为地位最高的成员&#xff08;若相等则取二者均可&#xff09;&#xff0c;其他成员的年龄与队长的差不能超过 k k …...

区块链实验室(26) - 区块链期刊Blockchain: Research and Applications

Elsevier出版物“Blockchain: Research and Applications”是浙江大学编审的期刊。该期刊自2020年创刊&#xff0c;并出版第1卷。每年出版4期&#xff0c;最新期是第4卷第3期(2023年9月)。 目前没有官方的IF&#xff0c;Elsevier的引用因子Citescore是6.4。 虽然是新刊&#xf…...

【学习笔记】[ARC153F] Tri-Colored Paths

假设三种颜色的边都存在&#xff0c;并且不存在这样的路径 首先观察到&#xff0c;对于一个简单环上的边&#xff0c;颜色一定相同 因此&#xff0c;考虑建立圆方树&#xff0c;问题转化为圆方树上的 D P DP DP问题。限制是对于方点所连接的边&#xff0c;必须涂上相同的颜色…...

基于SSM的实习管理系统

基于SSM的实习管理系统、前后端分离 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringSpringMVCMyBatisVue工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 管理员界面 教师 学生 研究背景 基于SSM的实习管理系统是一个基于Spring、Spring…...

在Vue中通过ElementUI构建前端页面【登录,注册】,在IEDA构建后端实现前后端分离

一.ElementUI组件入门 1.对于ElementUI的理解 是一套基于 Vue.js 的开源UI组件库&#xff0c;提供了丰富的可复用组件&#xff0c;可以帮助开发者快速构建美观、易用的前端界面 2.Element UI 的特点和优势 多样化的组件&#xff1a;Element UI 提供了众多常用的基础组件&#…...

TX2 open ttyTHS2

TX2 open ttyTHS2 #冷风那个吹# 于 2019-04-01 14:10:43 发布 1749 收藏 6 分类专栏: 平时问题积累 TX2 版权 平时问题积累 同时被 2 个专栏收录 22 篇文章0 订阅 订阅专栏 TX2 30 篇文章8 订阅 订阅专栏 TX2上有5个串口,但是ttyTHS1是调试串口,ttyTHS3是蓝牙,ttyTHS…...

conan入门(二十八):解决conan 1.60.0下 arch64-linux-gnu交叉编译openssl/3.1.2报错问题

上一篇博客《conan入门(二十七):因profile [env]字段废弃导致的boost/1.81.0 在aarch64-linux-gnu下交叉编译失败》解决了conan 1.60.0交叉编译boost/1.80.1的问题后&#xff0c;我继续交叉编译openssl/3.1.2时又报错了 conan install openssl/3.1.2 -pr:h aarch64-linux-gnu.…...

Xcode 15 运行<iOS 14, 启动崩溃问题

如题. Xcode 15 启动 < iOS 14(没具体验证过, 我的问题设备是iOS 13.7)真机设备 出现启动崩溃 解决方案: Build Settings -> Other Linker Flags -> Add -> -ld64...

HTTPS协议概述

HTTPS&#xff08;Hypertext Transfer Protocol over Secure Socket Layer&#xff0c;基于安全套接字层的超文本传输协议&#xff09;&#xff0c;是以安全为目标的HTTP通道&#xff0c;简单讲是HTTP的安全版。即HTTP下加入SSL层&#xff0c;HTTPS的安全基础是SSL&#xff0c;…...

jmeterbeanshell调用jsonpath获取对应值

1.jmeter 新建线程组、Java Request、BeanShell Assertion、View Results Tree 2、在BeanShell Assertion中贴入代码&#xff1a; import org.apache.jmeter.extractor.json.jsonpath.JSONManager; import java.util.List; JSONManager js new JSONManager(); String jsonStr…...

C++中实现雪花算法来在秒级以及毫秒及时间内生成唯一id

1、雪花算法原理 雪花算法&#xff08;Snowflake Algorithm&#xff09;是一种用于生成唯一ID的算法&#xff0c;通常用于分布式系统中&#xff0c;以确保生成的ID在整个分布式系统中具有唯一性。它的名称来源于雪花的形状&#xff0c;因为生成的ID通常是64位的整数&#xff0…...

OPTEE Gprof(GNU profile)

安全之安全(security)博客目录导读 OPTEE调试技术汇总 目录 一、序言 二、Gprof使用 三、Gprof实现 1、Call graph information 2、PC distribution over time 一、序言 本文描述了如何使用gprof对TA进行概要分析。 配置选项CFG_TA_GPROF_SUPPORTy使OP-TEE能够从在用户模…...

MySQL 事务的操作指南(事务篇 二)

基本操作 事务的提交方式&#xff1a;自动提交&#xff08;autocommit1&#xff09;和手动提交&#xff08;autocommit0&#xff09; 查询和修改事务提交方式&#xff1a; -- 查看事务提交方式(标识表示这是个系统变量) select autocommit ;-- 修改事务提交方式为自动提交 …...

Oracle 查询 SQL 语句

目录 1. Oracle 查询 SQL 语句1.1. 性能查询常用 SQL1.1.1. 查询最慢的 SQL1.1.2. 列出使用频率最高的 5 个查询1.1.3. 消耗磁盘读取最多的 sql top51.1.4. 找出需要大量缓冲读取(逻辑读)操作的查询1.1.5. 查询每天执行慢的 SQL1.1.6. 从 V$SQLAREA 中查询最占用资源的查询1.1.…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中&#xff0c;工业自动化网关起着至关重要的作用&#xff0c;尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关&#xff0c;为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多&#xff0c;其中不少设备采用Devicenet协议。Devicen…...

若依登录用户名和密码加密

/*** 获取公钥&#xff1a;前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

第八部分:阶段项目 6:构建 React 前端应用

现在&#xff0c;是时候将你学到的 React 基础知识付诸实践&#xff0c;构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段&#xff0c;你可以先使用模拟数据&#xff0c;或者如果你的后端 API&#xff08;阶段项目 5&#xff09;已经搭建好&#xff0c;可以直接连…...