LLM(二)| LIMA:在1k高质量数据上微调LLaMA1-65B,性能超越ChatGPT
本文将介绍在Lit-GPT上使用LoRA微调LLaMA模型,并介绍如何自定义数据集进行微调其他开源LLM
监督指令微调(Supervised Instruction Finetuning)
什么是监督指令微调?为什么关注它?
目前大部分LLM都是decoder-only,通常是续写任务,有时候未必符合用户的需求,SFT是通过构造指令输入和期待的输出数据微调LLM,让LLM根据输入的指令输出期待的内容,这样微调好的LLM会输出更符合用户需求或者特点任务,

SFT数据格式一般如下所示:
-  Instruction text 
-  Input text (optional) 
-  Output text 
Input是可选的,下面是SFT数据格式的示例:

SFT的微调和Pre-training是一样的,也是根据上文预测下一个token,如下图所示:

SFT数据集如何生成?
SFT数据集构建通常有两种方法:人工标注和使用LLM(比如GPT-4)来生成的,人工标注对于构建垂直领域比较合适,可以减少有偏数据,但是成本略高;使用LLM生成,可以在短时间内生成大量数据。
SFT数据集构建以及SFT微调Pipeline如下图所示:

LLM生成SFT数据方法总结
Self-Instruct
Self-Instruct(https://arxiv.org/abs/2212.10560):一个通过预训练语言模型自己引导自己来提高的指令遵循能力的框架。
Self-Instruct有如下四个阶段:
-  步骤1:作者从 175个种子任务中随机抽取 8 条自然语言指令作为示例,并提示InstructGPT生成更多的任务指令。 
-  步骤2:作者确定步骤1中生成的指令是否是一个分类任务。如果是,他们要求 InstructGPT 根据给定的指令为输出生成所有可能的选项,并随机选择特定的输出类别,提示 InstructGPT 生成相应的“输入”内容。对于不属于分类任务的指令,应该有无数的“输出”选项。作者提出了“输入优先”策略,首先提示 InstructGPT根据给定的“指令”生成“输入”,然后根据“指令”和生成的“输入”生成“输出”。 
-  步骤3:基于第 2 步的结果,作者使用 InstructGPT 生成相应指令任务的“输入”和“输出”,采用“输出优先”或“输入优先”的策略。 
-  步骤4:作者对生成的指令任务进行了后处理(例如,过滤类似指令,去除输入输出的重复数据),最终得到52K条英文指令 
完整的Self-Instruct流程如下图所示:

Alpaca dataset(https://github.com/gururise/AlpacaDataCleaned)的52K数据就是采用该方法生成的。
Backtranslation
回译在传统的机器学习中是一种数据增强方法,比如从中文翻译成英文,再从英文翻译会中文,这样生成的中文与原来的中文在语义上是一致的,但是文本不同;然而SFT数据生成的回译(https://arxiv.org/abs/2308.06259)则是通过输出来生成指令,具体步骤如下图所示:

LIMA
LIMA来自论文《The LIMA: Less Is More for Alignment》,LIMA是在LLaMA V1 65B模型上使用1k高质量数据进行微调获得的,性能如下:

在Lit-GPT库上微调LLM
Lit-GPT支持的模型如下表所示:
| Model and usage | Reference | 
| Meta AI Llama 2 | Touvron et al. 2023 | 
| Stability AI FreeWilly2 | Stability AI 2023 | 
| Stability AI StableCode | Stability AI 2023 | 
| TII UAE Falcon | TII 2023 | 
| OpenLM Research OpenLLaMA | Geng & Liu 2023 | 
| LMSYS Vicuna | Li et al. 2023 | 
| LMSYS LongChat | LongChat Team 2023 | 
| Together RedPajama-INCITE | Together 2023 | 
| EleutherAI Pythia | Biderman et al. 2023 | 
| StabilityAI StableLM | Stability AI 2023 | 
| Platypus | Lee, Hunter, and Ruiz 2023 | 
| NousResearch Nous-Hermes | Org page | 
| Meta AI Code Llama | Rozière et al. 2023 | 
下面以LLaMA2-7B为例说明在 上进行微调的步骤,首先需要clone
Lit-GPT仓库,微调步骤如下:
1)下载、准备模型
export HF_TOKEN=your_tokenpython scripts/download.py \--repo_id meta-llama/Llama-2-7b-hf
python scripts/convert_hf_checkpoint.py \--checkpoint_dir meta-llama/Llama-2-7b-hf
2)准备微调数据
python scripts/prepare_lima.py \--checkpoint_dir checkpoints/meta-llama/Llama-2-7b-hf
3)使用LoRA进行微调
python finetune/lora.py \--checkpoint_dir checkpoints/meta-llama/Llama-2-7b-hf \--data_dir data/lima
Tips
官方建议数据的tokens控制在2048之内,可以减少GPU显存消耗,对应的代码也需要增加参数--max_seq_length 2048
python scripts/prepare_lima.py \--checkpoint_dir checkpoints/meta-llama/Llama-2-7b-hf \--max_seq_length 2048
或者也可以修改 finetune/lora.py文件中的参数change override_max_seq_length = None调整为 override_max_seq_length = 2048
对于LIMA模型的1k数据进行微调,需要调整max_iters=1000

Lit-GPT上支持的数据集

Lit-GPT定义客户化数据集
加载自定义数据集大致需要两步,首先需要准备三列CSV数据,示例如下:

第一步,执行如下脚本:
python scripts/prepare_csv.py \--csv_dir MyDataset.csv \--checkpoint_dir checkpoints/meta-llama/Llama-2-7b-hf
第二步,与上述LIMA类似,是执行scripts/prepare_dataset.py脚本
参考文献:
[1] https://lightning.ai/pages/community/tutorial/optimizing-llms-from-a-dataset-perspective/
相关文章:
 
LLM(二)| LIMA:在1k高质量数据上微调LLaMA1-65B,性能超越ChatGPT
本文将介绍在Lit-GPT上使用LoRA微调LLaMA模型,并介绍如何自定义数据集进行微调其他开源LLM 监督指令微调(Supervised Instruction Finetuning) 什么是监督指令微调?为什么关注它? 目前大部分LLM都是decoder-only&…...
Android AMS——创建Application(七)
与在 App 内部启动一个 Activity 的不同之处在于,点击桌面 Launcher 首次启动一个应用程序的时候,会先去创建一个该应用程序对应的进程,然后执行 ActivityThread 的 main() 方法去创建该应用对应的 Application,然后再去启动首页 Activity。前面已经分析了进程的创建和启动…...
 
html 边缘融合加载
html 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>边缘融合加载</title><style>* {margin: 0;padding: 0;box-sizing: border-box;}body {height: 100vh;padding-bottom: 80px;b…...
 
ElasticSearch - 在 微服务项目 中基于 RabbitMQ 实现 ES 和 MySQL 数据异步同步(考点)
目录 一、数据同步 1.1、什么是数据同步 1.2、解决数据同步面临的问题 1.3、解决办法 1.3.1、同步调用 1.3.2、异步通知(推荐) 1.3.3、监听 binlog 1.3、基于 RabbitMQ 实现数据同步 1.3.1、需求 1.3.2、在“酒店搜索服务”中 声明 exchange、…...
 
Springboot+vue的企业人事管理系统(有报告),Javaee项目,springboot vue前后端分离项目。
演示视频: Springbootvue的企业人事管理系统(有报告),Javaee项目,springboot vue前后端分离项目。 项目介绍: 本文设计了一个基于Springbootvue的前后端分离的企业人事管理系统,采用M(model&am…...
 
初识Java 11-1 函数式编程
目录 旧方式与新方式 lambda表达式 方法引用 Runnable 未绑定方法引用 构造器方法引用 函数式接口 带有更多参数的函数式接口 解决缺乏基本类型函数式接口的问题 本笔记参考自: 《On Java 中文版》 函数式编程语言的一个特点就是其处理代码片段的简易性&am…...
 
【Ambari】银河麒麟V10 ARM64架构_安装Ambari2.7.6HDP3.3.1问题总结
🍁 博主 "开着拖拉机回家"带您 Go to New World.✨🍁 🦄 个人主页——🎐开着拖拉机回家_大数据运维-CSDN博客 🎐✨🍁 🪁🍁 希望本文能够给您带来一定的帮助🌸文…...
 
李宏毅机器学习第一课(结尾附作业模型详细分析)
机器学习就是让机器找一个函数f,这个函数f是通过计算机找出来的 如果参数少的话,我们可以使用暴搜,但是如果参数特别多的话,我们就要使用Gradient Descent Regression (输出的是一个scalar数值) Classification (在…...
对日项目工作总结
从18年8月到23年中秋节,目前已经入职主营对日车载项目的公司满5年了,一般来说,在一家公司工作工作超过3年,如果是在比较大型以及流程规范的公司,那么该公司的工作流程,工作思维会深深地烙印在该员工的脑海中…...
 
设计模式探索:从理论到实践的编码示例 (软件设计师笔记)
😀前言 设计模式,作为软件工程领域的核心概念之一,向我们展示了开发过程中面对的典型问题的经典解决方案。这些模式不仅帮助开发者创建更加结构化、模块化和可维护的代码,而且也促进了代码的复用性。通过这篇文章,我们…...
 
【内网穿透】在Ubuntu搭建Web小游戏网站,并将其发布到公网访问
目录 前言 1. 本地环境服务搭建 2. 局域网测试访问 3. 内网穿透 3.1 ubuntu本地安装cpolar 3.2 创建隧道 3.3 测试公网访问 4. 配置固定二级子域名 4.1 保留一个二级子域名 4.2 配置二级子域名 4.3 测试访问公网固定二级子域名 前言 网:我们通常说的是互…...
在cesuim上展示二维模型
前提问题:在cesuim上展示二维模型 解决过程: 1.获取或定义所需变量 2.通过window.cesium.viewer.imageryLayers.addImageryProvider和new Cesium.UrlTemplateImageryProvider进行建模 3.传入url路径后拼接{z}/{x}/{y}.png 4.聚焦到此模型window.ces…...
c/c++中如何输入pi
标准的 C/C 语言中没有π这个符号及常量,一般在开发过程中是通过开发人员自己定义这个常量的,最常见的方式是使用宏定义: 方法1:#define pi 3.1415926 方法2:使用反三角函数const double pi acos(-1.0);...
python爬虫:JavaScript 混淆、逆向技术
Python爬虫在面对JavaScript混淆和逆向技术时可能会遇到一些挑战,因为JavaScript混淆技术和逆向技术可以有效地阻止爬虫对网站内容的正常抓取。以下是一些应对这些挑战的方法: 分析网页源代码:首先,尝试分析网页的源代码…...
Vue error:0308010C:digital envelope routines::unsupported
vue项目,npm run dev的时候出现:Error: error:0308010C:digital envelope routines::unsupported vue项目,npm run dev的时候出现:Error: error:0308010C:digital envelope routines::unsupported 这个是node的版本问题。我的nod…...
 
gitee 远程仓库操作基础(一)
git remote add <远程仓库名> <仓库远程地址> :给远程仓库取个别名,简化一大堆字符串操作 git remote add origin xxx.git :取个Origin名字 git remote -v :查看本地存在的远程仓库 git pull <远程仓库名><远程分支名>:<本地分支名> 相同可取消…...
DRM全解析 —— ADD_FB2(0)
本文参考以下博文: DRM驱动(四)之ADD_FB 特此致谢! 在笔者之前的libdrm全解析系列文章中,讲到了drmIoctl(fd, DRM_IOCTL_MODE_ADDFB, &f)以及其封装函数drmModeAddFB。对应的文章链接为: libdrm全解…...
 
01Redis的安装和开机自启的配置
安装Redis 单机安装Redis 大多数企业都是基于Linux服务器来部署项目,而且Redis官方也没有提供Windows版本的安装包(此处选择的Linux版本的CentOS 7) Windows版直接下载对应版本的.zip压缩包解压即可使用 第一步: Redis是基于C语言编写的,因此首先需要…...
 
进入IT行业:选择前端开发还是后端开发?
一、前言 开发做前端好还是后端好?这是一个常见的问题,特别是对于初学者来说。在编程世界中,前端开发和后端开发分别代表着用户界面和数据逻辑,就像城市的两个不同街区一样。但是,究竟哪个街区更适合我们作为开发者呢…...
 
Java集成Onlyoffice以及安装和使用示例,轻松实现word、ppt、excel在线编辑功能协同操作,Docker安装Onlyoffice
安装Onlyoffice 拉取onlyoffice镜像 docker pull onlyoffice/documentserver 查看镜像是否下载完成 docker images 启动onlyoffice 以下是将本机的9001端口映射到docker的80端口上,访问时通过服务器ip:9001访问,并且用 -v 将本机机/data/a…...
 
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
 
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
 
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
 
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
 
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
 
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
 
CSS3相关知识点
CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...
 
机器学习复习3--模型评估
误差与过拟合 我们将学习器对样本的实际预测结果与样本的真实值之间的差异称为:误差(error)。 误差定义: ①在训练集上的误差称为训练误差(training error)或经验误差(empirical error&#x…...
