队列的使用以及模拟实现(C++版本)
🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨
🐻强烈推荐优质专栏: 🍔🍟🌯C++的世界(持续更新中)
🐻推荐专栏1: 🍔🍟🌯C语言初阶
🐻推荐专栏2: 🍔🍟🌯C语言进阶
🔑个人信条: 🌵知行合一
🍉本篇简介:>:讲解队列的使用以及模拟实现
金句分享:
✨来日方长,未来是星辰大海般璀璨,✨
✨不必踌躇于过去的半亩方塘.✨
目录
- 一、队列的介绍
- 二、队列的使用
- 🍭练练手(用队列模拟栈)
- 三、队列的模拟实现:
- (1) 浅提一下双端队列`deque`
- (2) 模拟实现
一、队列的介绍
C++
中的队列是一种容器,使用队列可以实现先进先出(FIFO)的数据结构。队列可以添加元素到队列的末尾,也可以从队列的开头删除元素。
队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的
成员函数来访问其元素。元素从队尾入队列,从队头出队列。
C++
中的队列通常使用STL
库中的queue
类实现。
队列的基本操作包括:
- push(element):将元素插入队列的末尾。
- pop():将队列的第一个元素删除。
- front():返回队列的第一个元素。
- back():返回队列的最后一个元素。
- empty():判断队列是否为空。
队列具有先进先出FIFO(First In First Out)
入队列:进行"插入"操作的一端称为队尾
出队列:进行"删除"操作的一端称为队头
二、队列的使用
文档链接
接口名 | 解释 |
---|---|
empty() | 判断是否为空队列 |
size() | 返回队列中有效元素的个数 |
front() | 返回队首元素的引用 |
back() | 返回队尾元素的引用 |
push() | 将新元素入队列 |
emplace() | 将新元素入队列 |
pop() | 将队首元素出队 |
相信大家对队列的基本操作十分简单,下面演示一下具体使用,使用十分简单,就不过分介绍了.
测试代码:
#include <iostream>
#include <queue>
using namespace std;void test1()
{queue<int> q1;//创建一个存储整形数据的队列q1.push(1); //入队列q1.push(2);q1.push(3);q1.emplace(4); //在stack使用时有详细介绍cout << "q1.front=" << q1.front() << endl; //取队头元素cout << "q1.back=" << q1.back() << endl; //取队尾元素//利用front的返回值,修改队首元素int& top = q1.front();top = 22;//利用back的返回值,修改队尾元素int& back = q1.back();top = -22;cout << endl;while (!q1.empty()) //只要队列不为空,就打印队头元素和出队列{cout << q1.front() << endl;q1.pop();//出队列}
}int main()
{test1();return 0;
}
运行结果:
q1.front=1
q1.back=4
22
2
3
4
🍭练练手(用队列模拟栈)
题目链接:
同样,在C语言阶段,我们已经"十分痛苦"的写过这道题,现在C++阶段,再来写要轻松很多了.
用队列实现栈(C语言版本)
C++
实现版本:
class MyStack {
public:MyStack() {}void push(int x) {if (!(q1.empty() && q2.empty())) {//往空栈里面插入数据q1.push(x);}else q2.push(x);}int pop() {queue<int>* empty_q ;queue<int>* un_empty_q;if (q1.empty()) {//找到两个队列中的空队列empty_q = &q1;un_empty_q = &q2;}else {empty_q = &q2;un_empty_q = &q1;}while (un_empty_q->size() > 1) {//将非空队列除了最后一个元素以外,其他全部插入到另一个队列empty_q->push(un_empty_q->front());un_empty_q->pop();}int front = un_empty_q->front();un_empty_q->pop();//删除剩下的最后一个元素->return front;}int top() {int top;if (q1.empty()) {top = q2.back();}else top = q1.back();return top;}bool empty() {return q1.empty() && q2.empty();}
private:queue<int> q1;queue<int> q2;
};
三、队列的模拟实现:
(1) 浅提一下双端队列deque
在介绍队列的,模拟实现前,先介绍一下deque
.
双端队列(Double-Ended Queue
),是一种具有队列和栈的特点的数据结构。它允许从两端插入和删除元素,具有以下特点:
- 可以从队列两端进行插入和删除操作。
- 支持常数级别的访问和修改元素,即在队列头和尾进行操作的时间复杂度都为O(1)。
- 在中间进行操作时,性能较差,时间复杂度为O(n)。
是的,这个双端队列不仅支持头插头删,尾插尾删的同时,还支持随机访问.
那这不就意味着链表list
和vector
都被淘汰了吗?
这里就不过多介绍deque的底层了,我们可以暂时理解为,类似于链表,但是链接起来的是一个个数组,这样就实现了这些功能.
但是,他并不能代替链表list
和vector
.原因如下:
与vector
比较
deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不
需要搬移大量的元素
劣势:但是它的访问需要计算,在大量访问元素的场景时,与vector比就落后了.
与list
比较
优势:其底层是连续空间,空间利用率比较高,不需要存储额外字段。
缺点:deque
有一个致命缺陷:不适合遍历,因为在遍历时,deque
的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque
的应用并不多.
巧合的是,stack
和queue
都不需要访问中间的元素,访问头部数据效率还是很高的.
所以STL
用deque
作为stack
和queue
的底层数据结构再合适不过了.
(2) 模拟实现
队列也是一种容器适配器,我们底层采用deque
实现还是很轻松的.
#pragma once
#include <iostream>
#include <deque>
using namespace std;namespace cjn
{template<class T, class Con = deque<T>>//默认采用deque进行复用class queue{public:queue(){}void push(const T& x){ //入队列元素相当于尾插_c.push_back(x);}void pop(){_c.pop_front(); //出队列是从队首元素出队,所以相当于头删}T& back(){ //返回队尾元素return _c.back();}const T& back()const{return _c.back();}T& front(){ //返回队首元素return _c.front();}const T& front()const{return _c.front();}size_t size()const{ //返回队列中有效元素的个数return _c.size();}bool empty()const{ //判断队列是否为空return _c.empty();}private:Con _c;};
}
相关文章:

队列的使用以及模拟实现(C++版本)
🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻强烈推荐优质专栏: 🍔🍟🌯C的世界(持续更新中) 🐻推荐专栏1: 🍔🍟🌯C语言初阶 🐻推荐专栏2: 🍔…...

RV1126笔记四十一:RV1126移植LIVE555
若该文为原创文章,转载请注明原文出处。 RV1126的SDK有提供了一个librtsp.a封装好的RTSP推流库,但不开源,还有个确定延时长,所以想自己写一个RTSP的推流,但不想太麻烦,所以使用Live555。 记录下移植过程和测试结果。 live555需要用到的包有 openssl 和live555 一、 编…...

stable diffusion模型评价框架
GhostReview:全球第一套AI绘画ckpt评测框架代码 - 知乎大家好,我是_GhostInShell_,是全球AI绘画模型网站Civitai的All Time Highest Rated (全球历史最高评价) 第二名的GhostMix的作者。在上一篇文章,我主要探讨自己关于ckpt的发展方向的观点…...

电脑开机慢问题的简单处理
电脑用久了,开机时间要10-20分钟特别慢,一下介绍两种简单有效处理方式,这两种方式经测试不会影响原系统软件的使用: 方式一:禁用非必要启动项【效果不是很明显】 利用360里面的优化加速禁用启动项【禁用启动项还有其…...
SpringMVC-Rest风格
一、简介 REST(Representational State Transfer),表现形式状态转换,它是一种软件架构风格 当我们想表示一个网络资源的时候,可以使用两种方式: 传统风格资源描述形式 http://localhost/user/getById?id1 查询id为1的用户信息…...

WebGL实现透明物体(α混合)
目录 α混合 如何实现α混合 1. 开启混合功能: 2. 指定混合函数 混合函数 gl.blendFunc()函数规范 可以指定给src_factor和dst_factor的常量 混合后颜色的计算公式 加法混合 半透明的三角形(LookAtBlendedTriangl…...

RecycleView刷新功能
RecycleView刷新某一个Item,或这某一个Item中某一个View。 这样的需求,在实际的开发中是很普遍的。 在数据变化后需要刷新列表。 刷新列表有三种方式: 前两种大家应该很熟,第三中会有点陌生。 那么这三种方式,有什…...

目标检测如何演变:从区域提议和 Haar 级联到零样本技术
目录 一、说明 二、目标检测路线图 2.1 路线图(一般) 2.2 路线图(更传统的方法) 2.3 路线图(深度学习方法) 2.4 对象检测指标的改进 三、传统检测方法 3.1 维奥拉-琼斯探测器 (2001) 3.2 HOG探测器…...
聊一聊国内大模型公司,大模型面试心得、经验、感受
有着过硬的技术却无处可用是不是很苦恼呢,大家在面试时是不是也积累了一些经验呢,本文详细总结了大佬在大模型面试时的一些经验及感悟,希望对大家面试找工作有所帮助。 2023年,大模型突然国内火了起来,笔者就面了一些…...
【分布式微服务】feign 异步调用获取不到ServletRequestAttributes
公司调用接口的时候使用feign,但是服务之间还是使用了鉴权,需要通过RequestInterceptor 去传递uuid 概念 OpenFeign是一个声明式的Web服务客户端,它使得编写HTTP客户端变得更简单。在使用OpenFeign进行异步调用时,你可以通过配置来实现。但是,如果你在配置或调用过程中遇…...
c#编程里面最复杂的技术问题有哪些
C#编程中最复杂的技术问题通常涉及高级主题和复杂的应用场景。以下是一些可能被认为是C#编程中最复杂的技术问题: 1. **多线程和并发编程:** 处理多线程和并发问题涉及到锁定、线程同步、死锁避免、线程安全性和性能优化等方面的知识。编写高效且线程安…...

github代码提交过程详细介绍
1、下载github上面的代码 (1)在github网站上,找到想要下载的代码仓库界面,点击Code选项就可以看到仓库的git下载地址; (2)使用命令下载:git clone 地址; 2、配置本地git…...

Linux -- 使用多张gpu卡进行深度学习任务(以tensorflow为例)
在linux系统上进行多gpu卡的深度学习任务 确保已安装最新的 TensorFlow GPU 版本。 import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices(GPU)))1、确保你已经正确安装了tensorflow和相关的GPU驱动,这里可以通…...

Mendix中的依赖管理:npm和Maven的应用
序言 在传统java开发项目中,我们可以利用maven来管理jar包依赖,但在mendix项目开发Custom Java Action时,由于目录结构有一些差异,我们需要自行配置。同样的,在mendix项目开发Custom JavaScript Action时,…...
自定义hooks之useLastState、useSafeState
自定义hooks之useLastState、useSafeState useLastState 在某些情况下,可能需要知道状态的历史值,例如,希望在状态变化时执行某些操作,但又需要访问上一个状态的值,以便进行比较或其他操作。自定义 React Hook 可以帮…...
前端判断: []+[], []+{}, {}+[], {}+{}
本质: 二元操作符规则 一般判断规则: 如果操作数是对象,则对象会转换为原始值如果其中一个操作数是字符串的话,另一个操作数也会转换成字符串,进行字符串拼接否则,两个操作数都将转换成数字或NaN,进行加法操作 转为原始数据类型的值的方法: Symbol.ToPrimitiveObject.protot…...
el-input-number/el-input 实现实时输入数字转换千分位(失焦时展示千分位)
el-input-number/el-input 实现实时输入数字转换千分位(失焦时展示千分位) 我把封装指令的代码放在了main.js,代码如下 // 金额展示千分位 Vue.directive("thousands", {inserted: function(el, binding) {// debugger// 获取input节点if (el.tagName.toLocaleUppe…...

一篇博客学会系列(2)—— C语言中的自定义类型 :结构体、位段、枚举、联合体
目录 前言 1、结构体 1.1、结构体类型的声明 1.2、特殊的结构体类型声明 1.3、结构体的自引用 1.4、结构体的定义和初始化 1.5、结构体成员变量的调用 1.6、结构体内存对齐 1.6.1、offsetof 1.6.2、结构体大小的计算 1.6.3、为什么存在内存对齐? 1.7、…...

KongA 任意用户登录漏洞分析
KongA 简介 KongA 介绍 KongA 是 Kong 的一个 GUI 工具。GitHub 地址是 https://github.com/pantsel/konga 。 KongA 概述 KongA 带来的一个最大的便利就是可以很好地通过UI观察到现在 Kong 的所有的配置,并且可以对于管理 Kong 节点 漏洞成因 未设置TOKEN_SECRE…...

吉力宝:智能科技鞋品牌步力宝引领传统产业创新思维
在现代经济环境下,市场经济下产品的竞争非常的激烈,如果没有营销,产品很可能不被大众认可,酒香也怕巷子深,许多传统产业不得不面临前所未有的挑战。而为了冲出这个“巷子”,许多企业需要采用创新思维&#…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅
目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...
ubuntu22.04 安装docker 和docker-compose
首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...

动态规划-1035.不相交的线-力扣(LeetCode)
一、题目解析 光看题目要求和例图,感觉这题好麻烦,直线不能相交啊,每个数字只属于一条连线啊等等,但我们结合题目所给的信息和例图的内容,这不就是最长公共子序列吗?,我们把最长公共子序列连线起…...